ﻻ يوجد ملخص باللغة العربية
The Santa Cruz Extreme AO Lab (SEAL) is a new visible-wavelength testbed designed to advance the state of the art in wavefront control for high contrast imaging on large, segmented, ground-based telescopes. SEAL provides multiple options for simulating atmospheric turbulence, including rotating phase plates and a custom Meadowlark spatial light modulator that delivers phase offsets of up to 6pi at 635nm. A 37-segment IrisAO deformable mirror (DM) simulates the W. M. Keck Observatory segmented primary mirror. The adaptive optics system consists of a woofer/tweeter deformable mirror system (a 97-actuator ALPAO DM and 1024-actuator Boston Micromachines MEMs DM, respectively), and four wavefront sensor arms: 1) a high-speed Shack-Hartmann WFS, 2) a reflective pyramid WFS, designed as a prototype for the ShaneAO system at Lick Observatory, 3) a vector-Zernike WFS, and 4) a Fast Atmospheric Self Coherent Camera Technique (FAST) demonstration arm, consisting of a custom focal plane mask and high-speed sCMOS detector. Finally, science arms preliminarily include a classical Lyot-style coronagraph as well as FAST (which doubles as a WFS and science camera). SEALs real time control system is based on the Compute and Control for Adaptive optics (CACAO) package, and is designed to support the efficient transfer of software between SEAL and the Keck II AO system. In this paper, we present an overview of the design and first light performance of SEAL.
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical p
Current and future high contrast imaging instruments aim to detect exoplanets at closer orbital separations, lower masses, and/or older ages than their predecessors, with the eventual goal of directly detecting terrestrial-mass habitable-zone exoplan
SCALES (Santa Cruz Array of Lenslets for Exoplanet Spectroscopy) is a 2-5 micron high-contrast lenslet integral-field spectrograph (IFS) driven by exoplanet characterization science requirements and will operate at W. M. Keck Observatory. Its fully c
Exoplanets are abundant in our galaxy and yet characterizing them remains a technical challenge. Solar System planets provide an opportunity to test the practical limitations of exoplanet observations with high signal-to-noise data that we cannot acc
High contrast coronagraphic imaging is a challenging task for telescopes with central obscurations and thick spider vanes, such as the Subaru Telescope. Our group is currently assembling an extreme AO bench designed as an upgrade for the newly commis