ﻻ يوجد ملخص باللغة العربية
Measuring the Cosmic X-ray Background (CXB) is a key to understand the Active Galactic Nuclei population, their absorption distribution and their average spectra. However, hard X-ray instruments suffer from time-dependent backgrounds and cross-calibration issues. The uncertainty of the CXB normalization remain of the order of 20%. To obtain a more accurate measurement, the Monitor Vsego Neba (MVN) instrument was built in Russia but not yet launched to the ISS (arXiv:1410.3284). We follow the same ideas to develop a CXB detector made of four collimated spectrometers with a rotating obturator on top. The collimators block off-axis photons below 100 keV and the obturator modulates on-axis photons allowing to separate the CXB from the instrumental background. Our spectrometers are made of 20 mm thick CeBr$_{3}$ crystals on top of a SiPM array. One tube features a $sim$20 cm$^2$ effective area and more energy coverage than MVN, leading to a CXB count rate improved by a factor of $sim$10 and a statistical uncertainty $sim$0.5% on the CXB flux. A prototype is being built and we are seeking for a launch opportunity.
The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncert
We estimate the contribution of AGNs and of their host galaxies to the infrared background. We use the luminosity function and evolution of AGNs recently determined by the hard X-ray surveys, and new Spectral Energy Distributions connecting the X-ray
We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model (Faucher-Giguere et al. 2009), the new model provides a better match to a large number of up-to-date empirical constraints, includ
We present the X-ray source number counts in two energy bands (0.5-2 and 2-10 keV) from a very large source sample: we combine data of six different surveys, both shallow wide field and deep pencil beam, performed with three different satellites (ROS
The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the