ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Cosmic X-ray Background accurately

112   0   0.0 ( 0 )
 نشر من قبل Hancheng Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the Cosmic X-ray Background (CXB) is a key to understand the Active Galactic Nuclei population, their absorption distribution and their average spectra. However, hard X-ray instruments suffer from time-dependent backgrounds and cross-calibration issues. The uncertainty of the CXB normalization remain of the order of 20%. To obtain a more accurate measurement, the Monitor Vsego Neba (MVN) instrument was built in Russia but not yet launched to the ISS (arXiv:1410.3284). We follow the same ideas to develop a CXB detector made of four collimated spectrometers with a rotating obturator on top. The collimators block off-axis photons below 100 keV and the obturator modulates on-axis photons allowing to separate the CXB from the instrumental background. Our spectrometers are made of 20 mm thick CeBr$_{3}$ crystals on top of a SiPM array. One tube features a $sim$20 cm$^2$ effective area and more energy coverage than MVN, leading to a CXB count rate improved by a factor of $sim$10 and a statistical uncertainty $sim$0.5% on the CXB flux. A prototype is being built and we are seeking for a launch opportunity.

قيم البحث

اقرأ أيضاً

The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncert ainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics-including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.
We estimate the contribution of AGNs and of their host galaxies to the infrared background. We use the luminosity function and evolution of AGNs recently determined by the hard X-ray surveys, and new Spectral Energy Distributions connecting the X-ray and the infrared emission, divided in intervals of absorption. These two ingredients allow us to determine the contribution of AGNs to the infrared background by using mostly observed quantities, with only minor assumptions. We obtain that AGN emission contributes little to the infrared background ($<$5% over most of the infrared bands), implying that the latter is dominated by star formation. However, AGN host galaxies may contribute significantly to the infrared background, and more specifically 10--20% in the 1--20$mu$m range and $sim$5% at $lambda<60mu m$. We also give the contribution of AGNs and of their host galaxies to the source number counts in various infrared bands, focusing on those which will be observed with Spitzer. We also report a significant discrepancy between the expected contribution of AGN hosts to the submm background and bright submm number counts with the observational constraints. We discuss the causes and implications of this discrepancy and the possible effects on the Spitzer far-IR bands.
We present an updated model of the cosmic ionizing background from the UV to the X-rays. Relative to our previous model (Faucher-Giguere et al. 2009), the new model provides a better match to a large number of up-to-date empirical constraints, includ ing: 1) new galaxy and AGN luminosity functions; 2) stellar spectra including binary stars; 3) obscured and unobscured AGN; 4) a measurement of the non-ionizing UV background; 5) measurements of the intergalactic HI and HeII photoionization rates at z~0-6; 6) the local X-ray background; and 7) improved measurements of the intergalactic opacity. In this model, AGN dominate the HI ionizing background at z<~3 and star-forming galaxies dominate it at higher redshifts. Combined with the steeply declining AGN luminosity function beyond z~2, the slow evolution of the HI ionization rate inferred from the high-redshift HI Lya forest requires an escape fraction from star-forming galaxies that increases with redshift (a population-averaged escape fraction of ~1% suffices to ionize the intergalactic medium at z=3 when including the contribution from AGN). We provide effective photoionization and photoheating rates calibrated to match the Planck 2018 reionization optical depth and recent constraints from the HeII Lya forest in hydrodynamic simulations.
201 - A.Moretti 2003
We present the X-ray source number counts in two energy bands (0.5-2 and 2-10 keV) from a very large source sample: we combine data of six different surveys, both shallow wide field and deep pencil beam, performed with three different satellites (ROS AT, Chandra and XMM-Newton). The sample covers with good statistics the largest possible flux range so far: [2.4*10^-17 - 10^-11] cgs in the soft band and [2.1*10^-16 - 8*10^{-12}]cgs in the hard band. Integrating the flux distributions over this range and taking into account the (small) contribution of the brightest sources we derive the flux density generated by discrete sources in both bands. After a critical review of the literature values of the total Cosmic X--Ray Background (CXB) we conclude that, with the present data, the 94.3%, and 88.8% of the soft and hard CXB can be ascribed to discrete source emission. If we extrapolate the analytical form of the Log N--Log S distribution beyond the flux limit of our catalog in the soft band we find that the flux from discrete sources at ~3*10^-18 cgs is consistent with the entire CXB, whereas in the hard band it accounts for only 93% of the total CXB at most, hinting for a faint and obscured population to arise at even fainter fluxes.
The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASAs NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا