ترغب بنشر مسار تعليمي؟ اضغط هنا

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting

97   0   0.0 ( 0 )
 نشر من قبل Rui Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformer, as a strong and flexible architecture for modelling long-range relations, has been widely explored in vision tasks. However, when used in video inpainting that requires fine-grained representation, existed method still suffers from yielding blurry edges in detail due to the hard patch splitting. Here we aim to tackle this problem by proposing FuseFormer, a Transformer model designed for video inpainting via fine-grained feature fusion based on novel Soft Split and Soft Composition operations. The soft split divides feature map into many patches with given overlapping interval. On the contrary, the soft composition operates by stitching different patches into a whole feature map where pixels in overlapping regions are summed up. These two modules are first used in tokenization before Transformer layers and de-tokenization after Transformer layers, for effective mapping between tokens and features. Therefore, sub-patch level information interaction is enabled for more effective feature propagation between neighboring patches, resulting in synthesizing vivid content for hole regions in videos. Moreover, in FuseFormer, we elaborately insert the soft composition and soft split into the feed-forward network, enabling the 1D linear layers to have the capability of modelling 2D structure. And, the sub-patch level feature fusion ability is further enhanced. In both quantitative and qualitative evaluations, our proposed FuseFormer surpasses state-of-the-art methods. We also conduct detailed analysis to examine its superiority.



قيم البحث

اقرأ أيضاً

308 - Ding Jia , Kai Han , Yunhe Wang 2021
This paper studies the model compression problem of vision transformers. Benefit from the self-attention module, transformer architectures have shown extraordinary performance on many computer vision tasks. Although the network performance is boosted , transformers are often required more computational resources including memory usage and the inference complexity. Compared with the existing knowledge distillation approaches, we propose to excavate useful information from the teacher transformer through the relationship between images and the divided patches. We then explore an efficient fine-grained manifold distillation approach that simultaneously calculates cross-images, cross-patch, and random-selected manifolds in teacher and student models. Experimental results conducted on several benchmarks demonstrate the superiority of the proposed algorithm for distilling portable transformer models with higher performance. For example, our approach achieves 75.06% Top-1 accuracy on the ImageNet-1k dataset for training a DeiT-Tiny model, which outperforms other ViT distillation methods.
121 - Yi Liu , Limin Wang , Xiao Ma 2021
Temporal action localization (TAL) is an important and challenging problem in video understanding. However, most existing TAL benchmarks are built upon the coarse granularity of action classes, which exhibits two major limitations in this task. First , coarse-level actions can make the localization models overfit in high-level context information, and ignore the atomic action details in the video. Second, the coarse action classes often lead to the ambiguous annotations of temporal boundaries, which are inappropriate for temporal action localization. To tackle these problems, we develop a novel large-scale and fine-grained video dataset, coined as FineAction, for temporal action localization. In total, FineAction contains 103K temporal instances of 106 action categories, annotated in 17K untrimmed videos. FineAction introduces new opportunities and challenges for temporal action localization, thanks to its distinct characteristics of fine action classes with rich diversity, dense annotations of multiple instances, and co-occurring actions of different classes. To benchmark FineAction, we systematically investigate the performance of several popular temporal localization methods on it, and deeply analyze the influence of short-duration and fine-grained instances in temporal action localization. We believe that FineAction can advance research of temporal action localization and beyond.
Human pose is a useful feature for fine-grained sports action understanding. However, pose estimators are often unreliable when run on sports video due to domain shift and factors such as motion blur and occlusions. This leads to poor accuracy when d ownstream tasks, such as action recognition, depend on pose. End-to-end learning circumvents pose, but requires more labels to generalize. We introduce Video Pose Distillation (VPD), a weakly-supervised technique to learn features for new video domains, such as individual sports that challenge pose estimation. Under VPD, a student network learns to extract robust pose features from RGB frames in the sports video, such that, whenever pose is considered reliable, the features match the output of a pretrained teacher pose detector. Our strategy retains the best of both pose and end-to-end worlds, exploiting the rich visual patterns in raw video frames, while learning features that agree with the athletes pose and motion in the target video domain to avoid over-fitting to patterns unrelated to athletes motion. VPD features improve performance on few-shot, fine-grained action recognition, retrieval, and detection tasks in four real-world sports video datasets, without requiring additional ground-truth pose annotations.
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.
Video inpainting aims to fill the given spatiotemporal holes with realistic appearance but is still a challenging task even with prosperous deep learning approaches. Recent works introduce the promising Transformer architecture into deep video inpain ting and achieve better performance. However, it still suffers from synthesizing blurry texture as well as huge computational cost. Towards this end, we propose a novel Decoupled Spatial-Temporal Transformer (DSTT) for improving video inpainting with exceptional efficiency. Our proposed DSTT disentangles the task of learning spatial-temporal attention into 2 sub-tasks: one is for attending temporal object movements on different frames at same spatial locations, which is achieved by temporally-decoupled Transformer block, and the other is for attending similar background textures on same frame of all spatial positions, which is achieved by spatially-decoupled Transformer block. The interweaving stack of such two blocks makes our proposed model attend background textures and moving objects more precisely, and thus the attended plausible and temporally-coherent appearance can be propagated to fill the holes. In addition, a hierarchical encoder is adopted before the stack of Transformer blocks, for learning robust and hierarchical features that maintain multi-level local spatial structure, resulting in the more representative token vectors. Seamless combination of these two novel designs forms a better spatial-temporal attention scheme and our proposed model achieves better performance than state-of-the-art video inpainting approaches with significant boosted efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا