ﻻ يوجد ملخص باللغة العربية
This paper presents a novel total Lagrangian cell-centred finite volume formulation of geometrically exact beams with arbitrary initial curvature undergoing large displacements and finite rotations. The choice of rotation parametrisation, the mathematical formulation of the beam kinematics, conjugate strain measures and the linearisation of the strong form of governing equations is described. The finite volume based discretisation of the computational domain and the governing equations for each computational volume are presented. The discretised integral form of the equilibrium equations are solved using a block-coupled Newton-Raphson solution procedure. The efficacy of the proposed methodology is presented by comparing the simulated numerical results with classic benchmark test cases available in the literature. The objectivity of strain measures for the current formulation and mesh convergence studies for both initially straight and curved beam configurations are also discussed.
We develop an approach to generating degree-of-freedom maps for arbitrary order finite element spaces for any cell shape. The approach is based on the composition of permutations and transformations by cell sub-entity. Current approaches to generatin
We develop and analyze an ultraweak variational formulation of the Reissner-Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thicknes
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the con
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization te
Piezoelectric devices, such as piezoelectric traveling wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, where at least one of them i