ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning

102   0   0.0 ( 0 )
 نشر من قبل David Ha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In complex systems, we often observe complex global behavior emerge from a collection of agents interacting with each other in their environment, with each individual agent acting only on locally available information, without knowing the full picture. Such systems have inspired development of artificial intelligence algorithms in areas such as swarm optimization and cellular automata. Motivated by the emergence of collective behavior from complex cellular systems, we build systems that feed each sensory input from the environment into distinct, but identical neural networks, each with no fixed relationship with one another. We show that these sensory networks can be trained to integrate information received locally, and through communication via an attention mechanism, can collectively produce a globally coherent policy. Moreover, the system can still perform its task even if the ordering of its inputs is randomly permuted several times during an episode. These permutation invariant systems also display useful robustness and generalization properties that are broadly applicable. Interactive demo and videos of our results: https://attentionneuron.github.io/

قيم البحث

اقرأ أيضاً

Many machine learning tasks such as multiple instance learning, 3D shape recognition, and few-shot image classification are defined on sets of instances. Since solutions to such problems do not depend on the order of elements of the set, models used to address them should be permutation invariant. We present an attention-based neural network module, the Set Transformer, specifically designed to model interactions among elements in the input set. The model consists of an encoder and a decoder, both of which rely on attention mechanisms. In an effort to reduce computational complexity, we introduce an attention scheme inspired by inducing point methods from sparse Gaussian process literature. It reduces the computation time of self-attention from quadratic to linear in the number of elements in the set. We show that our model is theoretically attractive and we evaluate it on a range of tasks, demonstrating the state-of-the-art performance compared to recent methods for set-structured data.
Performance of a sensory-neural network developed for diagnosing of diseases is described. Information about patients condition is provided by answers to the questionnaire. Questions correspond to sensors generating signals when patients acknowledge symptoms. These signals excite neurons in which characteristics of the diseases are represented by synaptic weights associated with indicators of symptoms. The disease corresponding to the most excited neuron is proposed as the result of diagnosing. Its reliability is estimated by the likelihood defined by the ratio of excitation of the most excited neuron and the complete neural network.
189 - Samuel Schmidgall 2020
The adaptive learning capabilities seen in biological neural networks are largely a product of the self-modifying behavior emerging from online plastic changes in synaptic connectivity. Current methods in Reinforcement Learning (RL) only adjust to ne w interactions after reflection over a specified time interval, preventing the emergence of online adaptivity. Recent work addressing this by endowing artificial neural networks with neuromodulated plasticity have been shown to improve performance on simple RL tasks trained using backpropagation, but have yet to scale up to larger problems. Here we study the problem of meta-learning in a challenging quadruped domain, where each leg of the quadruped has a chance of becoming unusable, requiring the agent to adapt by continuing locomotion with the remaining limbs. Results demonstrate that agents evolved using self-modifying plastic networks are more capable of adapting to complex meta-learning learning tasks, even outperforming the same network updated using gradient-based algorithms while taking less time to train.
Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Strong AI. Reinforcement learning is similar to learning in biology. It is of great significance to study the combination of SNN and RL. We propose the reinforcement learning method of spike distillation network (SDN) with STBP. This method uses distillation to effectively avoid the weakness of STBP, which can achieve SOTA performance in classification, and can obtain a smaller, faster convergence and lower power consumption SNN reinforcement learning model. Experiments show that our method can converge faster than traditional SNN reinforcement learning and DNN reinforcement learning methods, about 1000 epochs faster, and obtain SNN 200 times smaller than DNN. We also deploy SDN to the PKU nc64c chip, which proves that SDN has lower power consumption than DNN, and the power consumption of SDN is more than 600 times lower than DNN on large-scale devices. SDN provides a new way of SNN reinforcement learning, and can achieve SOTA performance, which proves the possibility of further development of SNN reinforcement learning.
141 - Owain Evans 2019
This article is about the cognitive science of visual art. Artists create physical artifacts (such as sculptures or paintings) which depict people, objects, and events. These depictions are usually stylized rather than photo-realistic. How is it that humans are able to understand and create stylized representations? Does this ability depend on general cognitive capacities or an evolutionary adaptation for art? What role is played by learning and culture? Machine Learning can shed light on these questions. Its possible to train convolutional neural networks (CNNs) to recognize objects without training them on any visual art. If such CNNs can generalize to visual art (by creating and understanding stylized representations), then CNNs provide a model for how humans could understand art without innate adaptations or cultural learning. I argue that Deep Dream and Style Transfer show that CNNs can create a basic form of visual art, and that humans could create art by similar processes. This suggests that artists make art by optimizing for effects on the human object-recognition system. Physical artifacts are optimized to evoke real-world objects for this system (e.g. to evoke people or landscapes) and to serve as superstimuli for this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا