ترغب بنشر مسار تعليمي؟ اضغط هنا

Journalistic Guidelines Aware News Image Captioning

207   0   0.0 ( 0 )
 نشر من قبل Xuewen Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The task of news article image captioning aims to generate descriptive and informative captions for news article images. Unlike conventional image captions that simply describe the content of the image in general terms, news image captions follow journalistic guidelines and rely heavily on named entities to describe the image content, often drawing context from the whole article they are associated with. In this work, we propose a new approach to this task, motivated by caption guidelines that journalists follow. Our approach, Journalistic Guidelines Aware News Image Captioning (JoGANIC), leverages the structure of captions to improve the generation quality and guide our representation design. Experimental results, including detailed ablation studies, on two large-scale publicly available datasets show that JoGANIC substantially outperforms state-of-the-art methods both on caption generation and named entity related metrics.



قيم البحث

اقرأ أيضاً

We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.
208 - Anwen Hu , Shizhe Chen , Qin Jin 2021
For an image with multiple scene texts, different people may be interested in different text information. Current text-aware image captioning models are not able to generate distinctive captions according to various information needs. To explore how to generate personalized text-aware captions, we define a new challenging task, namely Question-controlled Text-aware Image Captioning (Qc-TextCap). With questions as control signals, this task requires models to understand questions, find related scene texts and describe them together with objects fluently in human language. Based on two existing text-aware captioning datasets, we automatically construct two datasets, ControlTextCaps and ControlVizWiz to support the task. We propose a novel Geometry and Question Aware Model (GQAM). GQAM first applies a Geometry-informed Visual Encoder to fuse region-level object features and region-level scene text features with considering spatial relationships. Then, we design a Question-guided Encoder to select the most relevant visual features for each question. Finally, GQAM generates a personalized text-aware caption with a Multimodal Decoder. Our model achieves better captioning performance and question answering ability than carefully designed baselines on both two datasets. With questions as control signals, our model generates more informative and diverse captions than the state-of-the-art text-aware captioning model. Our code and datasets are publicly available at https://github.com/HAWLYQ/Qc-TextCap.
Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the curre nt prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server.
182 - Anwen Hu , Shizhe Chen , Qin Jin 2021
Most current image captioning systems focus on describing general image content, and lack background knowledge to deeply understand the image, such as exact named entities or concrete events. In this work, we focus on the entity-aware news image capt ioning task which aims to generate informative captions by leveraging the associated news articles to provide background knowledge about the target image. However, due to the length of news articles, previous works only employ news articles at the coarse article or sentence level, which are not fine-grained enough to refine relevant events and choose named entities accurately. To overcome these limitations, we propose an Information Concentrated Entity-aware news image CAPtioning (ICECAP) model, which progressively concentrates on relevant textual information within the corresponding news article from the sentence level to the word level. Our model first creates coarse concentration on relevant sentences using a cross-modality retrieval model and then generates captions by further concentrating on relevant words within the sentences. Extensive experiments on both BreakingNews and GoodNews datasets demonstrate the effectiveness of our proposed method, which outperforms other state-of-the-arts. The code of ICECAP is publicly available at https://github.com/HAWLYQ/ICECAP.
Self-attention (SA) network has shown profound value in image captioning. In this paper, we improve SA from two aspects to promote the performance of image captioning. First, we propose Normalized Self-Attention (NSA), a reparameterization of SA that brings the benefits of normalization inside SA. While normalization is previously only applied outside SA, we introduce a novel normalization method and demonstrate that it is both possible and beneficial to perform it on the hidden activations inside SA. Second, to compensate for the major limit of Transformer that it fails to model the geometry structure of the input objects, we propose a class of Geometry-aware Self-Attention (GSA) that extends SA to explicitly and efficiently consider the relative geometry relations between the objects in the image. To construct our image captioning model, we combine the two modules and apply it to the vanilla self-attention network. We extensively evaluate our proposals on MS-COCO image captioning dataset and superior results are achieved when comparing to state-of-the-art approaches. Further experiments on three challenging tasks, i.e. video captioning, machine translation, and visual question answering, show the generality of our methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا