ﻻ يوجد ملخص باللغة العربية
Toroidal vortices are whirling disturbances rotating about a ring-shaped core while advancing in the direction normal to the ring orifice. Toroidal vortices are commonly found in nature and being studied in a wide range of disciplines. Here we report the experimental observation of photonic toroidal vortex as a new solution to Maxwells equations with the use of conformal mapping. The helical phase twists around a closed loop leading to an azimuthal local orbital angular momentum density. The preparation of such intriguing light field may offer insights of extending toroidal vortex to other disciplines and find important applications in light-matter interaction, optical manipulation, photonic symmetry and topology, and quantum information.
Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polar
Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that
On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small
The transverse electromagnetic waves are major information and energy carriers. In 1996, Hellwarth and Nouchi theoretically identified a radically different, non-transverse type of electromagnetic pulses of toroidal topology. These pulses, which are
The toroidal response is numerically investigated in a multifold double-ring metamaterials at the antibonding magnetic-dipole mode (i.e., antiparallel magnetic dipoles in one double-ring fold). This intriguing toroidal resonance in metamaterials is c