ترغب بنشر مسار تعليمي؟ اضغط هنا

Global well-posedness for the three-dimensional full compressible viscous non-resistive MHD system

145   0   0.0 ( 0 )
 نشر من قبل Yang Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Yang Li




اسأل ChatGPT حول البحث

In this paper, we consider the three-dimensional full compressible viscous non-resistive MHD system. Global well-posedness is proved for an initial-boundary value problem around a strong background magnetic field. It is also shown that the unique solution converges to the steady state at an almost exponential rate as time tends to infinity. The proof is based on the celebrated two-tier energy method, due to Guo and Tice [emph{Arch. Ration. Mech. Anal.}, 207 (2013), pp. 459--531; emph{Anal. PDE.}, 6 (2013), pp. 287--369], reformulated in Lagrangian coordinates. The obtained result may be viewed as an extension of Tan and Wang [emph{SIAM J. Math. Anal.}, 50 (2018), pp. 1432--1470] to the context of heat-conductive fluids. This in particular verifies the stabilization effects of vertical magnetic field in the full compressible non-resistive fluids.



قيم البحث

اقرأ أيضاً

In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition for magnetic field and Dirichlet boundary condition for temperature on the boundary. When the viscosity, heat conductivity and magnetic diffusivity coefficients tend to zero in the same rate, there is a boundary layer that is described by a Prandtl-type system. By applying a coordinate transformation in terms of stream function as motivated by the recent work cite{liu2016mhdboundarylayer} on the incompressible MHD system, under the non-degeneracy condition on the tangential magnetic field, we obtain the local-in-time well-posedness of the boundary layer system in weighted Sobolev spaces.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffi lani, Takaoka and Tao. A polynomial growth bound for the solution is also given.
164 - Junyan Zhang 2020
We prove the local well-posedness in Sobolev spaces of the free-boundary problem for compressible inviscid resistive isentropic MHD system under the Rayleigh-Taylor physical sign condition, which describes the motion of a free-boundary compressible p lasma in an electro-magnetic field with magnetic diffusion. We use Lagrangian coordinates and apply the tangential smoothing method introduced by Coutand-Shkoller to construct the approximation solutions. One of the key observations is that the Christodoulou-Lindblad type elliptic estimate together with magnetic diffusion not only gives the common control of magnetic field and fluid pressure directly, but also controls the Lorentz force which is a higher order term in the energy functional.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities $rho_0,$ velocity fields $u_0$ and temperatures $theta_0$ with $a_0:=rho_0-1indot B^{frac np}_{p,1},$ $u_0indot B^{frac np-1}_{p,1}$ and $theta_0indot B^{frac np-2}_{p,1}.$ After recasting the whole system in Lagrangian coordinates, and working with the emph{total energy along the flow} rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is $ngeq2,$ and $1<p<2n.$ Back to Eulerian coordinates, this allows to improve the range of $p$s for which the system is locally well-posed, compared to Danchin, Comm. Partial Differential Equations 26 (2001).
81 - Jinkai Li 2019
In this paper, the initial-boundary value problem of the 1D full compressible Navier-Stokes equations with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness is established for any $H^1$ initial data. The initial density is required to be nonnegative, which is not necessary to be uniformly away from vacuum. This not only generalizes the well-known result of Kazhikhov--Shelukhin (Kazhikhov, A.~V.; Shelukhin, V.~V.: emph{Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas}, J.,Appl.,Math.,Mech., bf41 rm(1977), 273--282.) from the heat conductive case to the non-heat conductive case, and the initial vacuum is allowed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا