ترغب بنشر مسار تعليمي؟ اضغط هنا

Pitch Angle Anisotropy Controls Particle Acceleration and Cooling in Radiative Relativistic Plasma Turbulence

335   0   0.0 ( 0 )
 نشر من قبل Luca Comisso
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Natures most powerful high-energy sources are capable of accelerating particles to high energy and radiate it away on extremely short timescales, even shorter than the light crossing time of the system. It is yet unclear what physical processes can produce such an efficient acceleration, despite the copious radiative losses. By means of radiative particle-in-cell simulations, we show that magnetically dominated turbulence in pair plasmas subject to strong synchrotron cooling generates a nonthermal particle spectrum with a hard power-law range (slope $p sim 1$) within a few eddy turnover times. Low pitch-angle particles can significantly exceed the nominal radiation-reaction limit, before abruptly cooling down. The particle spectrum becomes even harder ($p < 1$) over time owing to particle cooling with an energy-dependent pitch-angle anisotropy. The resulting synchrotron spectrum is hard ($ u F_ u propto u^s$ with $s sim 1$). Our findings have important implications for understanding the nonthermal emission from high-energy astrophysical sources, most notably the prompt phase of gamma-ray bursts and gamma-ray flares from the Crab nebula.



قيم البحث

اقرأ أيضاً

102 - Martin S. Weidl 2015
Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasiline ar theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous non-isothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons, Langmuir waves, and ion-sound waves are obtained for a inhomogeneous unmagnetized plasma. The result show that the presence of inhomogeneity significantly changes the overall evolution of the system. The inhomogeneity is effective in shifting the wavenumbers of the Langmuir waves, and can thus switch between different process governing the weakly turbulent state. The results can be applied to a variety of plasma conditions, where we choose solar coronal parameters as an illustration, when performing the numerical analysis.
Particle transport, acceleration and energisation are phenomena of major importance for both space and laboratory plasmas. Despite years of study, an accurate theoretical description of these effects is still lacking. Validating models with self-cons istent, kinetic simulations represents today a new challenge for the description of weakly-collisional, turbulent plasmas. We perform two-dimensional (2D) hybrid-PIC simulations of steady-state turbulence to study the processes of diffusion and acceleration. The chosen plasma parameters allow to span different systems, going from the solar corona to the solar wind, from the Earths magnetosheath to confinement devices. To describe the ion diffusion, we adapted the Nonlinear Guiding Center (NLGC) theory to the 2D case. Finally, we investigated the local influence of coherent structures on particle energisation and acceleration: current sheets play an important role if the ions Larmor radii are on the order of the current sheets size. This resonance-like process leads to the violation of the magnetic moment conservation, eventually enhancing the velocity-space diffusion.
We use 3D fully kinetic particle-in-cell simulations to study the occurrence of magnetic reconnection in a simulation of decaying turbulence created by anisotropic counter-propagating low-frequency Alfven waves consistent with critical-balance theory . We observe the formation of small-scale current-density structures such as current filaments and current sheets as well as the formation of magnetic flux ropes as part of the turbulent cascade. The large magnetic structures present in the simulation domain retain the initial anisotropy while the small-scale structures produced by the turbulent cascade are less anisotropic. To quantify the occurrence of reconnection in our simulation domain, we develop a new set of indicators based on intensity thresholds to identify reconnection events in which both ions and electrons are heated and accelerated in 3D particle-in-cell simulations. According to the application of these indicators, we identify the occurrence of reconnection events in the simulation domain and analyse one of these events in detail. The event is related to the reconnection of two flux ropes, and the associated ion and electron exhausts exhibit a complex three-dimensional structure. We study the profiles of plasma and magnetic-field fluctuations recorded along artificial-spacecraft trajectories passing near and through the reconnection region. Our results suggest the presence of particle heating and acceleration related to small-scale reconnection events within magnetic flux ropes produced by the anisotropic Alfvenic turbulent cascade in the solar wind. These events are related to current structures of order a few ion inertial lengths in size.
It is shown that in low-beta, weakly collisional plasmas, such as the solar corona, some instances of the solar wind, the aurora, inner regions of accretion discs, their coronae, and some laboratory plasmas, Alfvenic fluctuations produce no ion heati ng within the gyrokinetic approximation, i.e., as long as their amplitudes (at the Larmor scale) are small and their frequencies stay below the ion Larmor frequency (even as their spatial scales can be above or below the ion Larmor scale). Thus, all low-frequency ion heating in such plasmas is due to compressive fluctuations (slow modes). Because these fluctuations energetically decouple from the Alfvenic ones already in the inertial range, the above conclusion means that the energy partition between ions and electrons in low-beta plasmas is decided at the outer scale, where turbulence is launched, and can be determined from magnetohydrodynamic (MHD) models of the relevant astrophysical systems. Any additional ion heating must come from non-gyrokinetic mechanisms such as cyclotron heating or the stochastic heating owing to distortions of ions Larmor orbits. An exception to these conclusions occurs in the Hall limit, i.e., when the ratio of the ion to electron temperatures is as low as the ion beta (equivalently, the electron beta is order unity). In this regime, slow modes couple to Alfvenic ones well above the Larmor scale (viz., at the ion inertial or ion sound scale), so the Alfvenic and compressive cascades join and then separate again into two cascades of fluctuations that linearly resemble kinetic Alfven and ion cyclotron waves, with the former heating electrons and the latter ions. The two cascades are shown to decouple, scalings for them are derived, and it is argued physically that the two species will be heated by them at approximately equal rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا