ترغب بنشر مسار تعليمي؟ اضغط هنا

APOGEE-2S Discovery of Light- and Heavy-Element Abundance Correlations in the Bulge Globular Cluster NGC 6380

167   0   0.0 ( 0 )
 نشر من قبل Jose G. Fernandez-Trincado
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive abundance ratios for nine stars in the relatively high-metallicity bulge globular cluster NGC 6380. We find a mean cluster metallicity between [Fe/H]$= -0.80$ and $-0.73$, with no clear evidence for a variation in iron abundances beyond the observational errors. Stars with strongly enhanced in [N/Fe] abundance ratios populate the cluster, and are anti-correlated with [C/Fe], trends that are considered a signal of the multiple-population phenomenon in this cluster. We detect an apparent intrinsic star-to-star spread ($gtrsim 0.27$ dex) in the slow neutron-capture process element (s-element) Ce II. Moreover, the [Ce/Fe] abundance ratio exhibits a likely correlation with [N/Fe], and a somewhat weaker correlation with [Al/Fe]. If confirmed, NGC 6380 could be the first high-metallicity globular cluster where a N-Ce correlation is detected. Furthermore, this correlation suggests that Ce may also be an element involved in the multiple-population phenomenon. Currently, a consensus interpretation for the origin of the this apparent N-Ce correlation in high-metallicity clusters is lacking. We tentatively suggest that it could be reproduced by different channels - low-mass asymptotic giant-branch stars in the high-metallicity regime or fast-rotating massive stars (spinstars), due to the rotational mixing. It may also be the cumulative effect of several pollution events including the occurrence of peculiar stars. Our findings should guide stellar nucleosynthesis models, in order to understand the reasons for its apparent exclusivity in relatively high-metallicity globular clusters.



قيم البحث

اقرأ أيضاً

NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition a nalysis of 11 red giant branch members based on high resolution (R ~ 38,000), high S/N (> 100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -138.1$_{-1.0}^{+1.0}$ km s$^{rm -1}$, a small dispersion of 3.8$_{-0.7}^{+1.0}$ km s$^{rm -1}$, and a relatively low (M/L$_{rm V}$)$_{rm odot}$ = 0.82$_{-0.28}^{+0.49}$. The cluster is moderately metal-poor with <[Fe/H]> = -1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La,Nd/Fe] ratios that are correlated with a small (~0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M 75, NGC 1851, and the intermediate metallicity populations of omega Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na,Al/Fe] abundances that are consistent with an accretion origin. A comparison with M 54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.
The second phase of the APOGEE survey is providing near-infrared, high-resolution, high signal-to-noise spectra of stars in the halo, disk, bar and bulge of the Milky Way. The near-infrared spectral window is especially important in the study of the Galactic bulge, where stars are obscured by the dust and gas of the disk in its line-of-sight. We present a chemical characterisation of the globular cluster NGC 6544 with high-resolution spectroscopy. The characterisation of the cluster chemical fingerprint, given its status of interloper towards the Galactic bulge and clear signatures of tidal disruption in its core is crucial for future chemical tagging efforts. Cluster members were selected from the DR16 of the APOGEE survey, using chemo-dynamical criteria of individual stars. A sample of 23 members of the cluster was selected. An analysis considering the intra-cluster abundance variations, known anticorrelations is given. According to the RGB content of the cluster, the iron content and $alpha$-enhancement are [Fe/H] $= -1.44 pm 0.04$ dex and [$alpha$/Fe] $= 0.20 pm 0.04$ dex, respectively. Cluster members show a significant spread in [Fe/H] and [Al/Fe] that is larger than expected based on measurement errors. An [Al/Fe] spread, signal of an Mg-Al anticorrelation is observed and used to constraint the cluster mass budget, along with C, N, Mg, Si, K, Ca, and Ce element variations are discussed. Across all the analysed evolutionary stages (RGB and AGB), about $sim2/3$ (14 out of 23) show distinct chemical patterns, possibly associated with second-generation stars.
We present elemental abundance analysis of high-resolution spectra for five giant stars, deriving Fe, Mg, Al, C, N, O, Si and Ce abundances, and spatially located within the innermost regions of the bulge globular cluster NGC 6522, based on H-band sp ectra taken with the multi-object APOGEE-north spectrograph from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Of the five cluster candidates, two previously unremarked stars are confirmed to have second-generation (SG) abundance patterns, with the basic pattern of depletion in C and Mg simultaneous with enrichment in N and Al as seen in other SG globular cluster populations at similar metallicity. } In agreement with the most recent optical studies, the NGC 6522 stars analyzed exhibit (when available) only mild overabundances of the s-process element Ce, contradicting the idea of the NGC 6522 stars being formed from gas enriched by spinstars and indicating that other stellar sources such as massive AGB stars could be the primary intra-cluster medium polluters. The peculiar abundance signature of SG stars have been observed in our data, confirming the presence of multiple generations of stars in NGC 6522.
147 - S. Villanova , G. Piotto , 2009
Helium has been proposed as the key element to interpret the observed multiple main sequences (MS), subgiant branches (SGB) and red giant branches (RGB), as well as the complex horizontal branch (HB) morphology in Globular Clusters (GC). However, up to now, He was never directly measured in suitable GC stars (8500<Teff<11500 K) with the purpose of verify this hypothesis. We studied 7 hot blue horizontal branch (BHB) stars (Teff<11500 K) in the GC NGC 6752 with the purpose to measure their Helium content. In addition Fe,Cr,Si,Ti,O,Na, and Ba abundances were measured. We could measure He abundance only for stars warmer than Teff=8500 K. All our targets with measurable He are zero age HB (ZAHB) objects and turned out to have a homogeneous He content with a mean value of Y=0.245+-0.012, compatible with the most recent measurements of the primordial He content of the Universe (Y~0.25). The whole sample of stars have a metallicity of [Fe/H]=-1.56+-0.03 and [alpha/Fe]=+0.21+-0.03. Our HB targets show the same Na-O anticorrelation identified among the TO-SGB-RGB stars. This is the first direct measurement of the He abundance for a significative sample of GC stars in a temperature regime where the He content is not altered by sedimentation processing or extreme mixing as suggested for the hottest, late helium flasher HB stars.
Globular Clusters are among the oldest objects in the Galaxy, thus their researchers are key to understanding the processes of evolution and formation that the galaxy has experienced in early stages. Spectroscopic studies allow us to carry out detail ed analyzes on the chemical composition of Globular Clusters. The aim of our research is to perform a detailed analysis of chemical abundances to a sample of stars of the Bulge Globular Cluster NGC 6553, in order to determine chemical patterns that allow us to appreciate the phenomenon of Multiple Population in one of the most metal-rich Globular Clusters in the Galaxy. This analysis is being carried out with data obtained by FLAMES/GIRAFFE spectrograph, VVV Survey and DR2 of Gaia Mission. We analyzed 20 Red Horizontal Branch Stars, being the first extensive spectroscopic abundance analysis for this cluster and measured 8 chemical elements (O, Na, Mg, Si, Ca, Ti, Cr and Ni), deriving a mean iron content of $[Fe/H] = -0.10pm0.01$ and a mean of $[alpha/Fe] = 0.21pm0.02$, considering Mg, Si, Ca and Ti (errors on the mean). We found a significant spread in the content of Na but a small or negligible in O. We did not find an intrinsic variation in the content of $alpha$ and iron-peak elements, showing a good agreement with the trend of the Bulge field stars, suggesting a similar origin and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا