ترغب بنشر مسار تعليمي؟ اضغط هنا

Deblurring 3D Characteristics of Heavy-Ion Collisions

110   0   0.0 ( 0 )
 نشر من قبل Pawel Danielewicz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Pawel Danielewicz




اسأل ChatGPT حول البحث

Deblurring procedure is proposed for accessing three-dimensional (3D) differential distributions relative to the reaction plane in energetic high-multiplicity heavy-ion collisions. Because reaction plane direction can be only coarsely estimated in measurements for the collisions, any direct attempts to measure 3D characteristics will yield blurred results. However, it is not difficult to estimate the distribution of the estimated reaction plane direction around the true. Once that blurring function is known, a deblurring procedure can be applied to reveal underlying characteristics of the emission relative to the true reaction plane. This is similar to image restoration in optics, such as from an image recorded with a shaken camera.

قيم البحث

اقرأ أيضاً

A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow magnitudes, all of which were previously studied with integrated flows. We find that the mode coupling effects among differential flows largely mirror those among the corresponding integrated flows, except at small transverse momenta where mode coupling contributions are small. For the fourth- and fifth-order flow vectors $V_4$ and $V_5$ we argue that the event plane correlations can be understood as the ratio between the mode coupling contributions to these flows and and the flow magnitudes. We also find that for $V_4$ and $V_5$ the linear response contribution scales linearly with the corresponding cumulant-defined eccentricities but not with the standard eccentricities.
The longitudinal asymmetry arises in relativistic heavy ion collisions due to fluctuation in the number of participating nucleons. This asymmetry causes a shift in the center of mass rapidity of the participant zone. The rapidity shift as well as the longitudinal asymmetry have been found to be significant at the top LHC energy for collisions of identical nuclei. We study the longitudinal asymmetry and its effect on charged particle rapidity distribution and anisotropic flow parameters at relatively lower RHIC energies using a model calculation. The rapidity shift is found to be more pronounced for peripheral collisions, smaller systems and also for lower beam energies due to longitudinal asymmetry. A detailed study has been done by associating the average rapidity shift to a polynomial relation where the coefficients of this polynomial characterize the effect of the asymmetry. We show that the rapidity shift may affect observables significantly at RHIC energies.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia l such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.
We study the single electron spectra from $D-$ and $B-$meson semileptonic decays in Au+Au collisions at $sqrt{s_{rm NN}}=$200, 62.4, and 19.2 GeV by employing the parton-hadron-string dynamics (PHSD) transport approach that has been shown to reasonab ly describe the charm dynamics at RHIC and LHC energies on a microscopic level. In this approach the initial heavy quarks are produced by using the PYTHIA which is tuned to reproduce the FONLL calculations. The produced heavy quarks interact with off-shell massive partons in QGP with scattering cross sections which are calculated in the dynamical quasi-particle model (DQPM). At energy densities close to the critical energy density the heavy quarks are hadronized into heavy mesons through either coalescence or fragmentation. After hadronization the heavy mesons interact with the light hadrons by employing the scattering cross sections from an effective Lagrangian. The final heavy mesons then produce single electrons through semileptonic decay. We find that the PHSD approach well describes the nuclear modification factor $R_{rm AA}$ and elliptic flow $v_2$ of single electrons in d+Au and Au+Au collisions at $sqrt{s_{rm NN}}=$ 200 GeV and the elliptic flow in Au+Au reactions at $sqrt{s_{rm NN}}=$ 62.4 GeV from the PHENIX collaboration, however, the large $R_{rm AA}$ at $sqrt{s_{rm NN}}=$ 62.4 GeV is not described at all. Furthermore, we make predictions for the $R_{rm AA}$ of $D-$mesons and of single electrons at the lower energy of $sqrt{s_{rm NN}}=$ 19.2 GeV. Additionally, the medium modification of the azimuthal angle $phi$ between a heavy quark and a heavy antiquark is studied. We find that the transverse flow enhances the azimuthal angular distributions close to $phi=$ 0 because the heavy flavors strongly interact with nuclear medium in relativistic heavy-ion collisions and almost flow with the bulk matter.
Transport simulations are very valuable for extracting physics information from heavy-ion collision experiments. With the emergence of many different transport codes in recent years, it becomes important to estimate their robustness in extracting phy sics information from experiments. We report on the results of a transport code comparison project. 18 commonly used transport codes were included in this comparison: 9 Boltzmann-Uehling-Uhlenbeck-type codes and 9 Quantum-Molecular-Dynamics-type codes. These codes have been required to simulate Au+Au collisions using the same physics input for mean fields and for in-medium nucleon-nucleon cross sections, as well as the same initialization set-up, the impact parameter, and other calculational parameters at 100 and 400 AMeV incident energy. Among the codes we compare one-body observables such as rapidity and transverse flow distributions. We also monitor non-observables such as the initialization of the internal states of colliding nuclei and their stability, the collision rates and the Pauli blocking. We find that not completely identical initializations constitute partly for different evolutions. Different strategies to determine the collision probabilities, and to enforce the Pauli blocking, also produce considerably different results. There is a substantial spread in the predictions for the observables, which is much smaller at the higher incident energy. We quantify the uncertainties in the collective flow resulting from the simulation alone as about $30%$ at 100 AMeV and $13%$ at 400 AMeV, respectively. We propose further steps within the code comparison project to test the different aspects of transport simulations in a box calculation of infinite nuclear matter. This should, in particular, improve the robustness of transport model predictions at lower incident energies where abundant amounts of data are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا