ﻻ يوجد ملخص باللغة العربية
Magnetars, the likely sources of Fast Radio Bursts (FRBs), produce both steady highly relativistic magnetized winds, and occasional ejection events. We demonstrate that the requirement of conservation of the magnetic flux dominates the overall dynamics of magnetic explosions. This is missed in conventional hydrodynamic models of the ejections as expanding shell with parametrically added magnetic field, as well as one-dimensional models of magnetic disturbances. Most of the initial free energy of an explosion is actually spent on stretching its own internal magnetic field, while doing minimal $pdV$ work against the surrounding. Magnetic explosions from magnetars come into force balance with the pre-flares wind close to the light cylinder. They are then advected quietly with the wind, or propagate as electromagnetic disturbances. No powerful shock waves are generated in the wind.
We develop a model for the radio afterglow of the giant flare of SGR 1806-20 arising due to the interaction of magnetically-dominated cloud, an analogue of Solar Coronal Mass Ejections (CMEs), with the interstellar medium (ISM). The CME is modeled as
Among the many different classes of stellar objects, neutron stars provide a unique environment where we can test (at the same time) our understanding of matter with extreme density, temperature, and magnetic field. In particular, the properties of m
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhan
Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetosp
Two classes of X-ray/$gamma$-ray sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars have been identified with isolated, slowly spinning magnetars, neutron stars whose emission draws energy from their extremely strong magnetic field ($s