ﻻ يوجد ملخص باللغة العربية
We present the first steps towards the determination of the signed graphs for which the adjacency matrix has all but at most two eigenvalues equal to 1 or -1. Here we deal with the disconnected, the bipartite and the complete signed graphs. In addition, we present many examples which cannot be obtained from an unsigned graph or its negative by switching.
A signed graph is a pair $(G,Sigma)$, where $G=(V,E)$ is a graph (in which parallel edges are permitted, but loops are not) with $V={1,ldots,n}$ and $Sigmasubseteq E$. The edges in $Sigma$ are called odd and the other edges of $E$ even. By $S(G,Sigma
In his survey Beyond graph energy: Norms of graphs and matrices (2016), Nikiforov proposed two problems concerning characterizing the graphs that attain equality in a lower bound and in a upper bound for the energy of a graph, respectively. We show t
Let $G$ be a graph. For a subset $X$ of $V(G)$, the switching $sigma$ of $G$ is the signed graph $G^{sigma}$ obtained from $G$ by reversing the signs of all edges between $X$ and $V(G)setminus X$. Let $A(G^{sigma})$ be the adjacency matrix of $G^{sig
In this paper, we introduce the concepts of the plain eigenvalue, the main-plain index and the refined spectrum of graphs. We focus on the graphs with two main and two plain eigenvalues and give some characterizations of them.
Given a graph, we can form a spanning forest by first sorting the edges in some order, and then only keep edges incident to a vertex which is not incident to any previous edge. The resulting forest is dependent on the ordering of the edges, and so we