ﻻ يوجد ملخص باللغة العربية
We focus on three scalar-field dark energy models (i.e., $phi$CDM models), which behave like cosmological trackers with potentials $V(phi)propto phi^{-alpha}$ (inverse power-law (IPL) model), $V(phi)propto coth^{alpha}{phi}$ (L-model) and $V(phi)propto cosh(alphaphi)$ (Oscillatory tracker model). The three $phi$CDM models, which reduce to the $Lambda$CDM model with the parameter $alpha to 0$, are investigated and compared with the recent observations of type Ia supernovae (SNe Ia), baryon acoustic oscillations (BAO) and cosmic microwave background radiation (CMB). The observational constraints from the combining sample (SNe Ia + BAO + CMB) indicate that none of the three $phi$CDM models exclude the $Lambda$CDM model at $68.3%$ confidence level, and a closed universe is strongly supported in the scenarios of the three $phi$CDM models (at 68.3% confidence level). Furthermore, we apply the Bayesian evidence to compare the $phi$CDM models and the $Lambda$CDM model with the analysis of the combining sample. The concordance $Lambda$CDM model is still the most supported one. In addition, among the three $phi$CDM models, the IPL model is the most competitive one, while the L-model/Oscillatory tacker model is moderately/strongly disfavored.
In the present paper, we investigate three scalar fields, qu field, phantom field and tachyon field, to explore the source of dark energy, using the Gaussian processes method from the background data and perturbation growth rate data. The correspondi
We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological ones using the combined datasets which include the CMB power spectra from WMAP
We present a systematic study of modified gravity (MG) models containing a single scalar field non-minimally coupled to the metric. Despite a large parameter space, exploiting the effective field theory of dark energy (EFT of DE) formulation and impo
The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards $-1$ or de
We constrain the contribution of tensor-mode perturbations with free $n_t$ in the models with dynamical dark energy with the barotropic equation of state using Planck-2015 data on CMB anisotropy, polarization and lensing, BICEP2/Keck Array data on B-