ﻻ يوجد ملخص باللغة العربية
As a classic self-similar network model, Sierpinski gasket network has been used many times to study the characteristics of self-similar structure and its influence on the dynamic properties of the network. However, the network models studied in these problems only contain a single self-similar structure, which is inconsistent with the structural characteristics of the actual network models. In this paper, a type of horizontally segmented 3 dimensional Sierpinski gasket network is constructed, whose main feature is that it contains the locally self-similar structures of the 2 dimensional Sierpinski gasket network and the 3 dimensional Sierpinski gasket network at the same time, and the scale transformation between the two kinds of self-similar structures can be controlled by adjusting the crosscutting coefficient. The analytical expression of the average trapping time on the network model is solved, which used to analyze the effect of two types of self-similar structures on the properties of random walks. Finally, we conclude that the dominant self-similar structure will exert a greater influence on the random walk process on the network.
As a basic dynamic feature on complex networks, the property of random walk has received a lot of attention in recent years. In this paper, we first studied the analytical expression of the mean global first passage time (MGFPT) on the 3-dimensional
We present the numbers of ice model and eight-vertex model configurations (with Boltzmann factors equal to one), I(n) and E(n) respectively, on the two-dimensional Sierpinski gasket SG(n) at stage $n$. For the eight-vertex model, the number of config
The multifractal behavior of the normalized first passage time is investigated on the two dimensional Sierpinski gasket with both absorbing and reflecting barriers. The normalized first passage time for Sinai model and the logistic model to arrive at
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG