ﻻ يوجد ملخص باللغة العربية
Despite the remarkable success deep models have achieved in Textual Matching (TM), their robustness issue is still a topic of concern. In this work, we propose a new perspective to study this issue -- via the length divergence bias of TM models. We conclude that this bias stems from two parts: the label bias of existing TM datasets and the sensitivity of TM models to superficial information. We critically examine widely used TM datasets, and find that all of them follow specific length divergence distributions by labels, providing direct cues for predictions. As for the TM models, we conduct adversarial evaluation and show that all models performances drop on the out-of-distribution adversarial test sets we construct, which demonstrates that they are all misled by biased training sets. This is also confirmed by the textit{SentLen} probing task that all models capture rich length information during training to facilitate their performances. Finally, to alleviate the length divergence bias in TM models, we propose a practical adversarial training method using bias-free training data. Our experiments indicate that we successfully improve the robustness and generalization ability of models at the same time.
Adversarial attacks have shown the vulnerability of machine learning models, however, it is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data. Most previous approaches conduct atta
Neural dialog models are known to suffer from problems such as generating unsafe and inconsistent responses. Even though these problems are crucial and prevalent, they are mostly manually identified by model designers through interactions. Recently,
We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue tha
Medical systems in general, and patient treatment decisions and outcomes in particular, are affected by bias based on gender and other demographic elements. As language models are increasingly applied to medicine, there is a growing interest in build
Unintended biases in machine learning (ML) models are among the major concerns that must be addressed to maintain public trust in ML. In this paper, we address process fairness of ML models that consists in reducing the dependence of models on sensit