ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic critical behavior of holographic phase transition at finite topological charge -- a potentially new quantum phase transition at finite chemical potential

320   0   0.0 ( 0 )
 نشر من قبل Toan T. Nguyen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate analytically the asymptotic critical behavior at large chemical potential of the conformal field living at the AdS boundary of a four-dimensional spacetime Einstein gravity. The threshold values of the chemical potential for the appearance of condensate states are discrete, equal spacing, with the gap approaches zero logarithmically in the limit $Trightarrow 0$. Numerical results surprisingly show that, the result apply even for states with low quantum number, as low as for the first or second excited states of the condensate, especially on the liquid side of the black hole van der Waals - like phase transition. We postulate that, at the exact limit $T = 0$ where the gap is zero, all excite states of the condensate are activated above a finite chemical potential, suggesting a new quantum phase transition as a function of the chemical potential.

قيم البحث

اقرأ أيضاً

Exploring the significant impacts of topological charge on the holographic phase transitions and conductivity we start from an Einstein - Maxwell system coupled with a charged scalar field in Anti - de Sitter spacetime. In our set up, the correspondi ng black hole (BH) is chosen to be the topological AdS one where the pressure is identified with the cosmological constant. Our numerical computation shows that the process of condensation is favored at finite topological charge and, in particular, the pressure variation in the bulk generates a mechanism for changing the order of phase transitions in the boundary: the second order phase transitions occur at pressures higher than the critical pressure of the phase transition from small to large BHs while they become first order at lower pressures. This property is confirmed with the aid of holographic free energy. Finally, the frequency dependent conductivity exhibits a gap when the phase transition is second order and when the phase transition becomes first order this gap is either reduced or totally lost.
Weyl anomaly leads to novel anomalous currents in a spacetime with boundaries. Recently it is found that the anomalous current can be significantly enhanced by the high temperature for free theories, which could make the experimental measurement easi er. In this paper, we investigate holographic anomalous currents at a finite temperature. It is found that the holographic current is still enhanced by the high temperature in dimensions higher than three. However, the temperature dependence is quite different from that of free theories. This may be due to the fact that the holographic CFT is strongly coupled and there is non-zero resistance in the holographic model. Remarkably, the temperature dependence of holographic anomalous currents is universal in the high temperature limit, which is independent of the choices of background magnetic fields.
We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $mu_I/mu_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases where one sees a drop across the phase transition. Possible consequences are discussed.
Quantum chromodynamics with two zero mass flavors is expected to exhibit a phase transition with O(4) critical behavior. Fixing the universality class is important for phenomenology and for facilitating the extrapolation of simulation data to physica l quark mass values. At Lattice 96 the Tsukuba and Bielefeld groups reported results from new simulations with dynamical staggered quarks at $N_t = 4$, which suggested a departure from the expected critical behavior. We report observations of similar deviations and discuss efforts in progress to understand this phenomenon.
We investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional paramet er space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter $alpha$, and the stiffness. We find that $alpha$ is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large $alpha$ and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا