ﻻ يوجد ملخص باللغة العربية
We discuss hydrodynamic forces acting on a two-dimensional liquid domain that moves laterally within a supported fluid membrane in the presence of odd viscosity. Since active rotating proteins can accumulate inside the domain, we focus on the difference in odd viscosity between the inside and outside of the domain. Taking into account the momentum leakage from a two-dimensional incompressible fluid to the underlying substrate, we analytically obtain the fluid flow induced by the lateral domain motion, and calculate the drag and lift forces acting on the moving liquid domain. In contrast to the passive case without odd viscosity, the lateral lift arises in the active case only when the in/out odd viscosities are different. The in/out contrast in the odd viscosity leads to nonreciprocal hydrodynamic responses of an active liquid domain.
We study the features of a radial Stokes flow due to a submerged jet directed toward a liquid-air interface. The presence of surface-active impurities confers to the interface an in-plane elasticity that resists the incident flow. Both analytical and
Slow flow of a single fluid through a porous medium is well understood on a macroscopic level through Darcys law, a linear relation between flow rate and a combination of pressure differences, viscosity, and gravitational forces. Two-phase flow is co
The orientational dynamics of inertialess anisotropic particles transported by two-dimensional convective turbulent flows display a coexistence of regular and chaotic features. We numerically demonstrate that very elongated particles (rods) align pre
We present a combined experimental and theoretical study of the drag force acting on a high porosity aerogel immersed in liquid ${}^3$He and its effect on sound propagation. The drag force is characterized by the Knudsen number, which is defined as
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find