ﻻ يوجد ملخص باللغة العربية
Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for the glass transition. Our approach provides an unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.
The specific heat capacity $c_v$ of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger $c_v$ and a more pronounced hysteresis for fragile glasses than for strong ones. Here, we show that these experimental f
We study non-equilibrium phases for interacting two-dimensional self-propelled particles with isotropic pair-wise interactions using a persistent kinetic Monte Carlo (MC) approach. We establish the quantitative phase diagram, including the motility-i
The non-equilibrium dynamics of condensation phenomena in nano-pores is studied via Monte Carlo simulation of a lattice gas model. Hysteretic behavior of the particle density as a function of the density of a reservoir is obtained for various pore ge
We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze t
We consider the use of a Kinetic Monte Carlo approach for the description of non-equilibrium bosonic systems, taking non-resonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered appro