ترغب بنشر مسار تعليمي؟ اضغط هنا

N-extension closed subcategories of (n+2)-angulated categories

192   0   0.0 ( 0 )
 نشر من قبل Panyue Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Panyue Zhou




اسأل ChatGPT حول البحث

Let $mathscr C$ be a Krull-Schmidt $(n+2)$-angulated category and $mathscr A$ be an $n$-extension closed subcategory of $mathscr C$. Then $mathscr A$ has the structure of an $n$-exangulated category in the sense of Herschend-Liu-Nakaoka. This construction gives $n$-exangulated categories which are not $n$-exact categories in the sense of Jasso nor $(n+2)$-angulated categories in the sense of Geiss-Keller-Oppermann in general. As an application, our result can lead to a recent main result of Klapproth.



قيم البحث

اقرأ أيضاً

204 - Carlo Klapproth 2021
Let $mathscr{F}$ be an $(n+2)$-angulated Krull-Schmidt category and $mathscr{A} subset mathscr{F}$ an $n$-extension closed, additive and full subcategory with $operatorname{Hom}_{mathscr{F}}(Sigma_n mathscr{A}, mathscr{A}) = 0$. Then $mathscr{A}$ nat urally carries the structure of an $n$-exact category in the sense of Jasso, arising from short $(n+2)$-angles in $mathscr{F}$ with objects in $mathscr{A}$ and there is a binatural and bilinear isomorphism $operatorname{YExt}^{n}_{(mathscr{A},mathscr{E}_{mathscr{A}})}(A_{n+1},A_0) cong operatorname{Hom}_{mathscr{F}}(A_{n+1}, Sigma_n A_{0})$ for $A_0, A_{n+1} in mathscr{A}$. For $n = 1$ this has been shown by Dyer and we generalize this result to the case $n > 1$. On the journey to this result, we also develop a technique for harvesting information from the higher octahedral axiom (N4*) as defined by Bergh and Thaule. Additionally, we show that the axiom (F3) for pre-$(n+2)$-angulated categories, introduced by Geiss, Keller and Oppermann and stating that a commutative square can be extended to a morphism of $(n+2)$-angles, implies a stronger version of itself.
104 - Jian He , Panyue Zhou 2021
The notion of right semi-equivalence in a right $(n+2)$-angulated category is defined in this article. Let $mathscr C$ be an $n$-exangulated category and $mathscr X$ is a strongly covariantly finite subcategory of $mathscr C$. We prove that the stand ard right $(n+2)$-angulated category $mathscr C/mathscr X$ is right semi-equivalence under a natural assumption. As an application, we show that a right $(n+2)$-angulated category has an $n$-exangulated structure if and only if the suspension functor is right semi-equivalence. Besides, we also prove that an $n$-exangulated category $mathscr C$ has the structure of a right $(n+2)$-angulated category with right semi-equivalence if and only if for any object $Xinmathscr C$, the morphism $Xto 0$ is a trivial inflation.
158 - Yu Liu , Panyue Zhou 2021
Recently, Wang, Wei and Zhang define the recollement of extriangulated categories, which is a generalization of both recollement of abelian categories and recollement of triangulated categories. For a recollement $(mathcal A ,mathcal B,mathcal C)$ of extriangulated categories, we show that $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal A$ and $mathcal C$ can be glued to get $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal B$ under certain conditions.
Let $n$ be an integer greater or equal than $3$. We give a simultaneous generalization of $(n-2)$-exact categories and $n$-angulated categories, and we call it one-sided $n$-suspended categories. One-sided $n$-angulated categories are also examples o f one-sided $n$-suspended categories. We provide a general framework for passing from one-sided $n$-suspended categories to one-sided $n$-angulated categories. Besides, we give a method to construct $n$-angulated quotient categories from Frobenius $n$-prile categories. These results generalize their works by Jasso for $n$-exact categories, Lin for $(n+2)$-angulated categories and Li for one-sided suspended categories.
Herschend-Liu-Nakaoka introduced the notion of $n$-exangulated categories. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka-Palu, but also gives a simultaneous generalization of $n$-exact categories and $(n +2)$-angulated categories. In this article, we give an $n$-exangulated version of Auslanders defect and Auslander-Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small $n$-exangulated category by using the category of defects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا