ﻻ يوجد ملخص باللغة العربية
This report describes the submission of the DKU-DukeECE-Lenovo team to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2021 track 4. Our system including a voice activity detection (VAD) model, a speaker embedding model, two clustering-based speaker diarization systems with different similarity measurements, two different overlapped speech detection (OSD) models, and a target-speaker voice activity detection (TS-VAD) model. Our final submission, consisting of 5 independent systems, achieves a DER of 5.07% on the challenge test set.
This report describes the submission of the DKU-DukeECE team to the self-supervision speaker verification task of the 2021 VoxCeleb Speaker Recognition Challenge (VoxSRC). Our method employs an iterative labeling framework to learn self-supervised sp
In this paper, we present the system submission for the VoxCeleb Speaker Recognition Challenge 2020 (VoxSRC-20) by the DKU-DukeECE team. For track 1, we explore various kinds of state-of-the-art front-end extractors with different pooling layers and
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to
This paper describes the XMUSPEECH speaker recognition and diarisation systems for the VoxCeleb Speaker Recognition Challenge 2021. For track 2, we evaluate two systems including ResNet34-SE and ECAPA-TDNN. For track 4, an important part of our syste
In this paper, we present the submitted system for the third DIHARD Speech Diarization Challenge from the DKU-Duke-Lenovo team. Our system consists of several modules: voice activity detection (VAD), segmentation, speaker embedding extraction, attent