ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological constraints from HII starburst galaxy, quasar angular size, and other measurements

158   0   0.0 ( 0 )
 نشر من قبل Shulei Cao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the constraints from two (2019 and 2021) compilations of HII starburst galaxy (HIIG) data and test the model-independence of quasar angular size (QSO) data using six spatially flat and non-flat cosmological models. We find that the new 2021 compilation of HIIG data generally provides tighter constraints and prefers lower values of cosmological parameters than those from the 2019 HIIG data. QSO data by themselves give relatively model-independent constraints on the characteristic linear size, $l_{rm m}$, of the QSOs within the sample. We also use Hubble parameter ($H(z)$), baryon acoustic oscillation (BAO), Pantheon Type Ia supernova (SN Ia) apparent magnitude (SN-Pantheon), and DES-3yr binned SN Ia apparent magnitude (SN-DES) measurements to perform joint analyses with HIIG and QSO angular size data, since their constraints are not mutually inconsistent within the six cosmological models we study. A joint analysis of $H(z)$, BAO, SN-Pantheon, SN-DES, QSO, and the newest compilation of HIIG data provides almost model-independent summary estimates of the Hubble constant, $H_0=69.7pm1.2 rm{km s^{-1} Mpc^{-1}}$, the non-relativistic matter density parameter, $Omega_{rm m_0}=0.293pm0.021$, and $l_{rm m}=10.93pm0.25$ pc.



قيم البحث

اقرأ أيضاً

We use HII starburst galaxy apparent magnitude measurements to constrain cosmological parameters in six cosmological models. A joint analysis of HII galaxy, quasar angular size, baryon acoustic oscillations peak length scale, and Hubble parameter mea surements result in relatively model-independent and restrictive estimates of the current values of the non-relativistic matter density parameter $Omega_{rm m_0}$ and the Hubble constant $H_0$. These estimates favor a 2.0$sigma$ to 3.4$sigma$ (depending on cosmological model) lower $H_0$ than what is measured from the local expansion rate. The combined data are consistent with dark energy being a cosmological constant and with flat spatial hypersurfaces, but do not strongly rule out mild dark energy dynamics or slightly non-flat spatial geometries.
We use higher-redshift gamma-ray burst (GRB), HII starburst galaxy (HIIG), and quasar angular size (QSO-AS) measurements to constrain six spatially flat and non-flat cosmological models. These three sets of cosmological constraints are mutually consi stent. Cosmological constraints from a joint analysis of these data sets are largely consistent with currently-accelerating cosmological expansion as well as with cosmological constraints derived from a combined analysis of Hubble parameter ($H(z)$) and baryon acoustic oscillation (BAO, with Planck-determined baryonic matter density) measurements. A joint analysis of the $H(z)$ + BAO + QSO-AS + HIIG + GRB data provides fairly model-independent determinations of the non-relativistic matter density parameter $Omega_{rm m_0}=0.313pm0.013$ and the Hubble constant $H_0=69.3pm1.2 rm{km s^{-1} Mpc^{-1}}$. These data are consistent with the dark energy being a cosmological constant and with spatial hypersurfaces being flat, but they do not rule out mild dark energy dynamics or a little spatial curvature. We also investigate the effect of including quasar flux measurements in the mix and find no novel conclusions.
We use measurements of the peak photon energy and bolometric fluence of 119 gamma-ray bursts (GRBs) extending over the redshift range of $0.3399 leq z leq 8.2$ to simultaneously determine cosmological and Amati relation parameters in six different co smological models. The resulting Amati relation parameters are almost identical in all six cosmological models, thus validating the use of the Amati relation in standardizing these GRBs. The GRB data cosmological parameter constraints are consistent with, but significantly less restrictive than, those obtained from a joint analysis of baryon acoustic oscillation and Hubble parameter measurements.
We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al., 2009a,b) with new cosmological data obtained during last three years: updated measurements of cosmic micr owave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass Sigma m_ u approx 0.4 eV and larger than standard effective number of neutrino species, N_eff approx 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameters constraints are presented. We show that taking in account systematic uncertainties, current cluster mass function data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.
In the paper, we consider two models in which dark energy is coupled with either dust matter or dark matter, and discuss the conditions that allow more time for structure formation to take place at high redshifts. These models are expected to have a larger age of the universe than that of $Lambda$CDM [universe consists of cold dark matter (CDM) and dark energy (a cosmological constant, $Lambda$)], so it can explain the formation of high redshift gravitationally bound systems which the $Lambda$CDM model cannot interpret. We use the observational Hubble parameter data (OHD) and Hubble parameter obtained from cosmic chronometers method ($H(z)$) in combination with baryon acoustic oscillation (BAO) data to constrain these models. With the best-fitting parameters, we discuss how the age, the deceleration parameter, and the energy density parameters evolve in the new universes, and compare them with that of $Lambda$CDM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا