ترغب بنشر مسار تعليمي؟ اضغط هنا

On the ability of monolingual models to learn language-agnostic representations

43   0   0.0 ( 0 )
 نشر من قبل Leandro Souza
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pretrained multilingual models have become a de facto default approach for zero-shot cross-lingual transfer. Previous work has shown that these models are able to achieve cross-lingual representations when pretrained on two or more languages with shared parameters. In this work, we provide evidence that a model can achieve language-agnostic representations even when pretrained on a single language. That is, we find that monolingual models pretrained and finetuned on different languages achieve competitive performance compared to the ones that use the same target language. Surprisingly, the models show a similar performance on a same task regardless of the pretraining language. For example, models pretrained on distant languages such as German and Portuguese perform similarly on English tasks.

قيم البحث

اقرأ أيضاً

To quantitatively and intuitively explore the generalization ability of pre-trained language models (PLMs), we have designed several tasks of arithmetic and logical reasoning. We both analyse how well PLMs generalize when the test data is in the same distribution as the train data and when it is different, for the latter analysis, we have also designed a cross-distribution test set other than the in-distribution test set. We conduct experiments on one of the most advanced and publicly released generative PLM - BART. Our research finds that the PLMs can easily generalize when the distribution is the same, however, it is still difficult for them to generalize out of the distribution.
The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations th at are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.
Despite the success of language models using neural networks, it remains unclear to what extent neural models have the generalization ability to perform inferences. In this paper, we introduce a method for evaluating whether neural models can learn s ystematicity of monotonicity inference in natural language, namely, the regularity for performing arbitrary inferences with generalization on composition. We consider four aspects of monotonicity inferences and test whether the models can systematically interpret lexical and logical phenomena on different training/test splits. A series of experiments show that three neural models systematically draw inferences on unseen combinations of lexical and logical phenomena when the syntactic structures of the sentences are similar between the training and test sets. However, the performance of the models significantly decreases when the structures are slightly changed in the test set while retaining all vocabularies and constituents already appearing in the training set. This indicates that the generalization ability of neural models is limited to cases where the syntactic structures are nearly the same as those in the training set.
Recent studies in zero-shot cross-lingual learning using multilingual models have falsified the previous hypothesis that shared vocabulary and joint pre-training are the keys to cross-lingual generalization. Inspired by this advancement, we introduce a cross-lingual transfer method for monolingual models based on domain adaptation. We study the effects of such transfer from four different languages to English. Our experimental results on GLUE show that the transferred models outperform the native English model independently of the source language. After probing the English linguistic knowledge encoded in the representations before and after transfer, we find that semantic information is retained from the source language, while syntactic information is learned during transfer. Additionally, the results of evaluating the transferred models in source language tasks reveal that their performance in the source domain deteriorates after transfer.
Languages typically provide more than one grammatical construction to express certain types of messages. A speakers choice of construction is known to depend on multiple factors, including the choice of main verb -- a phenomenon known as emph{verb bi as}. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا