ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost everywhere convergence of spectral sums for self-adjoint operators

147   0   0.0 ( 0 )
 نشر من قبل Peng Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $L$ be a non-negative self-adjoint operator acting on the space $L^2(X)$, where $X$ is a metric measure space. Let ${ L}=int_0^{infty} lambda dE_{ L}({lambda})$ be the spectral resolution of ${ L}$ and $S_R({ L})f=int_0^R dE_{ L}(lambda) f$ denote the spherical partial sums in terms of the resolution of ${ L}$. In this article we give a sufficient condition on $L$ such that $$ lim_{Rrightarrow infty} S_R({ L})f(x) =f(x), {rm a.e.} $$ for any $f$ such that ${rm log } (2+L) fin L^2(X)$. These results are applicable to large classes of operators including Dirichlet operators on smooth bounded domains, the Hermite operator and Schrodinger operators with inverse square potentials.



قيم البحث

اقرأ أيضاً

Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi- classical approach, which results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.
In this article we give a comprehensive treatment of a `Clifford module flow along paths in the skew-adjoint Fredholm operators on a real Hilbert space that takes values in KO${}_{*}(mathbb{R})$ via the Clifford index of Atiyah-Bott-Shapiro. We devel op its properties for both bounded and unbounded skew-adjoint operators including an axiomatic characterization. Our constructions and approach are motivated by the principle that [ text{spectral flow} = text{Fredholm index}. ] That is, we show how the KO--valued spectral flow relates to a KO-valued index by proving a Robbin-Salamon type result. The Kasparov product is also used to establish a spectral flow $=$ Fredholm index result at the level of bivariant K-theory. We explain how our results incorporate previous applications of $mathbb{Z}/ 2mathbb{Z}$-valued spectral flow in the study of topological phases of matter.
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $sto 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ nor m but BBM showed that the $W^{s,p}$ norm becomes the $H^{1,p} = F^{1}_{p,2}$ norm. Naively, for $p eq 2$ this seems like a contradiction, but we resolve this by providing embeddings of $W^{s,p}$ into $F^{s}_{p,q}$ for $q in {p,2}$ with sharp constants with respect to $s in (0,1)$. As a consequence we obtain an $mathbb{R}^N$-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown.
162 - Lawrence G. Brown 2014
The main result (roughly) is that if (H_i) converges weakly to H and if also f(H_i) converges weakly to f(H), for a single strictly convex continuous function f, then (H_i) must converge strongly to H. One application is that if f(pr(H)) = pr(f(H)), where pr denotes compression to a closed subspace M, then M must be invariant for H. A consequence of this is the verification of a conjecture of Arveson, that Theorem 9.4 of [Arv] remains true in the infinite dimensional case. And there are two applications to operator algebras. If h and f(h) are both quasimultipliers, then h must be a multiplier. Also (still roughly stated) if h and f(h) are both in pA_sa p, for a closed projection p, then h must be strongly q-continuous on p.
Smoothing (and decay) spacetime estimates are discussed for evolution groups of self-adjoint operators in an abstract setting. The basic assumption is the existence (and weak continuity) of the spectral density in a functional setting. Spectral ident ities for the time evolution of such operators are derived, enabling results concerning best constants for smoothing estimates. When combined with suitable comparison principles (analogous to those established in our previous work), they yield smoothing estimates for classes of functions of the operators . A important particular case is the derivation of global spacetime estimates for a perturbed operator $H+V$ on the basis of its comparison with the unperturbed operator $H.$ A number of applications are given, including smoothing estimates for fractional Laplacians, Stark Hamiltonians and Schrodinger operators with potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا