ﻻ يوجد ملخص باللغة العربية
Let $L$ be a non-negative self-adjoint operator acting on the space $L^2(X)$, where $X$ is a metric measure space. Let ${ L}=int_0^{infty} lambda dE_{ L}({lambda})$ be the spectral resolution of ${ L}$ and $S_R({ L})f=int_0^R dE_{ L}(lambda) f$ denote the spherical partial sums in terms of the resolution of ${ L}$. In this article we give a sufficient condition on $L$ such that $$ lim_{Rrightarrow infty} S_R({ L})f(x) =f(x), {rm a.e.} $$ for any $f$ such that ${rm log } (2+L) fin L^2(X)$. These results are applicable to large classes of operators including Dirichlet operators on smooth bounded domains, the Hermite operator and Schrodinger operators with inverse square potentials.
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi-
In this article we give a comprehensive treatment of a `Clifford module flow along paths in the skew-adjoint Fredholm operators on a real Hilbert space that takes values in KO${}_{*}(mathbb{R})$ via the Clifford index of Atiyah-Bott-Shapiro. We devel
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $sto 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ nor
The main result (roughly) is that if (H_i) converges weakly to H and if also f(H_i) converges weakly to f(H), for a single strictly convex continuous function f, then (H_i) must converge strongly to H. One application is that if f(pr(H)) = pr(f(H)),
Smoothing (and decay) spacetime estimates are discussed for evolution groups of self-adjoint operators in an abstract setting. The basic assumption is the existence (and weak continuity) of the spectral density in a functional setting. Spectral ident