ﻻ يوجد ملخص باللغة العربية
Various legacy and emerging industrial control applications create the requirement of periodic and time-sensitive communication (TSC) for 5G/6G networks. State-of-the-art semi-persistent scheduling (SPS) techniques fall short of meeting the requirements of this type of critical traffic due to periodicity misalignment between assignments and arriving packets that lead to significant waiting delays. To tackle this challenge, we develop a novel recursive periodicity shifting (RPS)-SPS scheme that provides an optimal scheduling policy by recursively aligning the period of assignments until the timing mismatch is minimized. RPS can be realized in 5G wireless networks with minimal modifications to the scheduling framework. Performance evaluation shows the effectiveness of the proposed scheme in terms of minimizing misalignment delay with arbitrary traffic periodicity.
Decentralized vehicle-to-everything (V2X) networks (i.e., Mode-4 C-V2X and Mode 2a NR-V2X), rely on periodic Basic Safety Messages (BSMs) to disseminate time-sensitive information (e.g., vehicle position) and has the potential to improve on-road safe
In 5G and beyond systems, the notion of latency gets a great momentum in wireless connectivity as a metric for serving real-time communications requirements. However, in many applications, research has pointed out that latency could be inefficient to
With the rapid development of railways, especially high-speed railways, there is an increasingly urgent demand for new wireless communication system for railways. Taking the mature 5G technology as an opportunity, 5G-railways (5G-R) have been widely
We consider a virtualized RAN architecture for 5G networks where the Remote Units are connected to a central unit via a mid-haul. To support high data rates, the midhaul is realized with a Passive Optical Network (PON). In this architecture, the data
Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited d