ترغب بنشر مسار تعليمي؟ اضغط هنا

UserBERT: Contrastive User Model Pre-training

98   0   0.0 ( 0 )
 نشر من قبل Chuhan Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

User modeling is critical for personalized web applications. Existing user modeling methods usually train user models from user behaviors with task-specific labeled data. However, labeled data in a target task may be insufficient for training accurate user models. Fortunately, there are usually rich unlabeled user behavior data which encode rich information of user characteristics and interests. Thus, pre-training user models on unlabeled user behavior data has the potential to improve user modeling for many downstream tasks. In this paper, we propose a contrastive user model pre-training method named UserBERT. Two self-supervision tasks are incorporated in UserBERT for user model pre-training on unlabeled user behavior data to empower user modeling. The first one is masked behavior prediction, which aims to model the relatedness between user behaviors. The second one is behavior sequence matching, which aims to capture the inherent user interests that are consistent in different periods. In addition, we propose a medium-hard negative sampling framework to select informative negative samples for better contrastive pre-training. We maintain a synchronously updated candidate behavior pool and an asynchronously updated candidate behavior sequence pool to select the locally hardest negative behaviors and behavior sequences in an efficient way. Extensive experiments on two real-world datasets in different tasks show that UserBERT can effectively improve various user models.

قيم البحث

اقرأ أيضاً

59 - Chuhan Wu , Fangzhao Wu , Tao Qi 2020
User modeling is critical for many personalized web services. Many existing methods model users based on their behaviors and the labeled data of target tasks. However, these methods cannot exploit useful information in unlabeled user behavior data, a nd their performance may be not optimal when labeled data is scarce. Motivated by pre-trained language models which are pre-trained on large-scale unlabeled corpus to empower many downstream tasks, in this paper we propose to pre-train user models from large-scale unlabeled user behaviors data. We propose two self-supervision tasks for user model pre-training. The first one is masked behavior prediction, which can model the relatedness between historical behaviors. The second one is next $K$ behavior prediction, which can model the relatedness between past and future behaviors. The pre-trained user models are finetuned in downstream tasks to learn task-specific user representations. Experimental results on two real-world datasets validate the effectiveness of our proposed user model pre-training method.
114 - Luyu Gao , Jamie Callan 2021
Recent research demonstrates the effectiveness of using fine-tuned language models~(LM) for dense retrieval. However, dense retrievers are hard to train, typically requiring heavily engineered fine-tuning pipelines to realize their full potential. In this paper, we identify and address two underlying problems of dense retrievers: i)~fragility to training data noise and ii)~requiring large batches to robustly learn the embedding space. We use the recently proposed Condenser pre-training architecture, which learns to condense information into the dense vector through LM pre-training. On top of it, we propose coCondenser, which adds an unsupervised corpus-level contrastive loss to warm up the passage embedding space. Retrieval experiments on MS-MARCO, Natural Question, and Trivia QA datasets show that coCondenser removes the need for heavy data engineering such as augmentation, synthesis, or filtering, as well as the need for large batch training. It shows comparable performance to RocketQA, a state-of-the-art, heavily engineered system, using simple small batch fine-tuning.
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness In this work, we improve robustness-aware self-supervised pre-training by learning representations that are co nsistent under both data augmentations and adversarial perturbations. Our approach leverages a recent contrastive learning framework, which learns representations by maximizing feature consistency under differently augmented views. This fits particularly well with the goal of adversarial robustness, as one cause of adversarial fragility is the lack of feature invariance, i.e., small input perturbations can result in undesirable large changes in features or even predicted labels. We explore various options to formulate the contrastive task, and demonstrate that by injecting adversarial perturbations, contrastive pre-training can lead to models that are both label-efficient and robust. We empirically evaluate the proposed Adversarial Contrastive Learning (ACL) and show it can consistently outperform existing methods. For example on the CIFAR-10 dataset, ACL outperforms the previous state-of-the-art unsupervised robust pre-training approach by 2.99% on robust accuracy and 2.14% on standard accuracy. We further demonstrate that ACL pre-training can improve semi-supervised adversarial training, even when only a few labeled examples are available. Our codes and pre-trained models have been released at: https://github.com/VITA-Group/Adversarial-Contrastive-Learning.
Recent developments in Natural Language Processing (NLP) demonstrate that large-scale, self-supervised pre-training can be extremely beneficial for downstream tasks. These ideas have been adapted to other domains, including the analysis of the amino acid sequences of proteins. However, to date most attempts on protein sequences rely on direct masked language model style pre-training. In this work, we design a new, adversarial pre-training method for proteins, extending and specializing similar advances in NLP. We show compelling results in comparison to traditional MLM pre-training, though further development is needed to ensure the gains are worth the significant computational cost.
245 - Ziqi Wang , Xiaozhi Wang , Xu Han 2021
Event extraction (EE) has considerably benefited from pre-trained language models (PLMs) by fine-tuning. However, existing pre-training methods have not involved modeling event characteristics, resulting in the developed EE models cannot take full ad vantage of large-scale unsupervised data. To this end, we propose CLEVE, a contrastive pre-training framework for EE to better learn event knowledge from large unsupervised data and their semantic structures (e.g. AMR) obtained with automatic parsers. CLEVE contains a text encoder to learn event semantics and a graph encoder to learn event structures respectively. Specifically, the text encoder learns event semantic representations by self-supervised contrastive learning to represent the words of the same events closer than those unrelated words; the graph encoder learns event structure representations by graph contrastive pre-training on parsed event-related semantic structures. The two complementary representations then work together to improve both the conventional supervised EE and the unsupervised liberal EE, which requires jointly extracting events and discovering event schemata without any annotated data. Experiments on ACE 2005 and MAVEN datasets show that CLEVE achieves significant improvements, especially in the challenging unsupervised setting. The source code and pre-trained checkpoints can be obtained from https://github.com/THU-KEG/CLEVE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا