ﻻ يوجد ملخص باللغة العربية
It is well known that the Collatz Conjecture can be reinterpreted as the Collatz Graph with root vertex 1, asking whether all positive integers are within the tree generated. It is further known that any cycle in the Collatz Graph can be represented as a tuple, given that inputting them into a function outputs an odd positive integer; yet, it is an open question as to whether there exist any tuples not of the form $(2,2,...,2)$, thus disproving the Collatz Conjecture. In this paper, we explore a variant of the Collatz Graph, which allows the 3x+1 operation to be applied to both even and odd integers. We prove an analogous function for this variant, called the Loosened Collatz Function (LCF), and observe various properties of the LCF in relation to tuples and outputs. We then analyse data on the numbers that are in cycles and the length of tuples that represent circuits. We prove a certain underlying unique factorisation monoid structure for tuples to the LCF and provide a geometric interpretation of satisfying tuples in higher dimensions. Research into this variant of the Collatz Graph may provide reason as to why there exist no cycles in the Collatz Graph.
The yet unproven Collatz conjecture maintains that repeatedly connecting even numbers n to n/2, and odd n to 3n + 1, connects all natural numbers by a unique root path to the Collatz tree with 1 as its root. The Collatz tree proves to be a Hilbert ho
Lothar Collatz had proposed in 1937 a conjecture in number theory called Collatz conjecture. Till today there is no evidence of proving or disproving the conjecture. In this paper, we propose an algorithmic approach for verification of the Collatz co
Graph neural networks (GNNs) have been successfully employed in a myriad of applications involving graph-structured data. Theoretical findings establish that GNNs use nonlinear activation functions to create low-eigenvalue frequency content that can
For a given graph $G(V,E)$ and one of its dominating set $S$, the subgraph $Gleft[Sright]$ induced by $S$ is a called a dominating tree if $Gleft[Sright]$ is a tree. Not all graphs has a dominating tree, we will show that a graph without cut vertices
The Bubble-sort graph $BS_n,,ngeqslant 2$, is a Cayley graph over the symmetric group $Sym_n$ generated by transpositions from the set ${(1 2), (2 3),ldots, (n-1 n)}$. It is a bipartite graph containing all even cycles of length $ell$, where $4leqsla