ترغب بنشر مسار تعليمي؟ اضغط هنا

Nested canalizing functions minimize sensitivity and simultaneously promote criticality

314   0   0.0 ( 0 )
 نشر من قبل Alkan Kabak\\c{c}io\\u{g}lu
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that nested canalizing functions are the minimum-sensitivity Boolean functions for any given activity ratio and we characterize the sensitivity boundary which has a nontrivial fractal structure. We further observe, on an extensive database of regulatory functions curated from the literature, that this bound severely constrains the robustness of biological networks. Our findings suggest that the accumulation near the edge of chaos in these systems is a natural consequence of a drive towards maximum stability while maintaining plasticity in transcriptional activity.

قيم البحث

اقرأ أيضاً

We introduce the nested canalyzing depth of a function, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities o f the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. It generalizes the notion of nested canalyzing functions (NCFs), which are precisely the functions with maximum depth. NCFs have been proposed as gene regulatory network models, but their structure is frequently too restrictive and they are extremely sparse. We find that functions become decreasingly sensitive to input perturbations as the canalyzing depth increases, but exhibit rapidly diminishing returns in stability. Additionally, we show that as depth increases, the dynamics of networks using these functions quickly approach the critical regime, suggesting that real networks exhibit some degree of canalyzing depth, and that NCFs are not significantly better than functions of sufficient depth for many applications of the modeling and reverse engineering of biological networks.
System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular enviro nments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov Chain Monte Carlo (MCMC) sampling based on Flux Balance Analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.
Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated wit h cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because this would help determine effective points of attack by therapeutics.
227 - Qijun He , Matthew Macauley 2015
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing dep th of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions.
The complex dynamics of gene expression in living cells can be well-approximated using Boolean networks. The average sensitivity is a natural measure of stability in these systems: values below one indicate typically stable dynamics associated with a n ordered phase, whereas values above one indicate chaotic dynamics. This yields a theoretically motivated adaptive advantage to being near the critical value of one, at the boundary between order and chaos. Here, we measure average sensitivity for 66 publicly available Boolean network models describing the function of gene regulatory circuits across diverse living processes. We find the average sensitivity values for these networks are clustered around unity, indicating they are near critical. In many types of random networks, mean connectivity <K> and the average activity bias of the logic functions <p> have been found to be the most important network properties in determining average sensitivity, and by extension a networks criticality. Surprisingly, many of these gene regulatory networks achieve the near-critical state with <K> and <p> far from that predicted for critical systems: randomized networks sharing the local causal structure and local logic of biological networks better reproduce their critical behavior than controlling for macroscale properties such as <K> and <p> alone. This suggests the local properties of genes interacting within regulatory networks are selected to collectively be near-critical, and this non-local property of gene regulatory network dynamics cannot be predicted using the density of interactions alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا