ﻻ يوجد ملخص باللغة العربية
Background: Previous studies have shown that up to 99.59 % of the Java apps using crypto APIs misuse the API at least once. However, these studies have been conducted on Java and C, while empirical studies for other languages are missing. For example, a controlled user study with crypto tasks in Python has shown that 68.5 % of the professional developers write a secure solution for a crypto task. Aims: To understand if this observation holds for real-world code, we conducted a study of crypto misuses in Python. Method: We developed a static analysis tool that covers common misuses of 5 different Python crypto APIs. With this analysis, we analyzed 895 popular Python projects from GitHub and 51 MicroPython projects for embedded devices. Further, we compared our results with the findings of previous studies. Results: Our analysis reveals that 52.26 % of the Python projects have at least one misuse. Further, some Python crypto libraries API design helps developers from misusing crypto functions, which were much more common in studies conducted with Java and C code. Conclusion: We conclude that we can see a positive impact of the good API design on crypto misuses for Python applications. Further, our analysis of MicroPython projects reveals the importance of hybrid analyses.
How crypto flows among Bitcoin users is an important question for understanding the structure and dynamics of the cryptoasset at a global scale. We compiled all the blockchain data of Bitcoin from its genesis to the year 2020, identified users from a
Over the last two decades, we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers on industrial problems from a variety of domains. The availability of such powerful general-
TextAttack is an open-source Python toolkit for adversarial attacks, adversarial training, and data augmentation in NLP. TextAttack unites 15+ papers from the NLP adversarial attack literature into a single framework, with many components reused acro
In this research, we provide a comprehensive empirical summary of the Python Package Repository, PyPI, including both package metadata and source code covering 178,592 packages, 1,745,744 releases, 76,997 contributors, and 156,816,750 import statemen
Similarly to production code, code smells also occur in test code, where they are called test smells. Test smells have a detrimental effect not only on test code but also on the production code that is being tested. To date, the majority of the resea