ﻻ يوجد ملخص باللغة العربية
In this letter, we point to three widely accepted challenges that the quantum theory, quantum information, and quantum foundations communities are currently facing: indeterminism, the semantics of conditional probabilities, and the spooky action at a distance. We argue that these issues are fundamentally rooted in conflations commonly made between causal dependencies, counterfactual dependencies, and statistical dependencies. We argue that a simple, albeit somewhat uncomfortable shift of viewpoint leads to a way out of the impossibility to extend the theory beyond indeterminism, and towards the possibility that sound extensions of quantum theory, possibly even deterministic yet not super-deterministic, will emerge in the future. The paradigm shift, which we present here, involves a non-trivial relaxation of the commonly accepted mathematical definition of free choice, leading to non-Nashian free choice, more care with the choice of probabilistic notations, and more rigorous use of vocabulary related to causality, counterfactuals, and correlations, which are three concepts of a fundamentally different nature.
It is argued that the traditional realist methodology of physics, according to which human concepts, laws and theories can grasp the essence of reality, is incompatible with the most fruitful interpretation of quantum formalism. The proof rests on th
In this comment we critically review an argument against the existence of objective physical outcomes, recently proposed by R. Healey [Foundations of Physics, 48(11), 1568-1589]. We show that his gedankenexperiment, based on a combination of Wigners
Why Im not happy with how Relational Quantum Mechanics has addressed the reconstruction of quantum theory, and why you shouldnt be either.
In a recent paper (arXiv:2107.04761), Sen critiques a superdeterministic model of quantum physics, Invariant Set Theory, proposed by one of the authors. He concludes that superdeterminism is `unlikely to solve the puzzle posed by the Bell correlation
The preparation procedure, an undefined notion in quantum theory, has not had the relevance that it deserves in the interpretation of quantum mechanical formalism. Here we utilize the concepts of identical and similar preparation procedures to show t