ﻻ يوجد ملخص باللغة العربية
In this study, a novel physics-data-driven Bayesian method named Heat Conduction Equation assisted Bayesian Neural Network (HCE-BNN) is proposed. The HCE-BNN is constructed based on the Bayesian neural network, it is a physics-informed machine learning strategy. Compared with the existed pure data driven method, to acquire physical consistency and better performance of the data-driven model, the heat conduction equation is embedded into the loss function of the HCE-BNN as a regularization term. Hence, the proposed method can build a more reliable model by physical constraints with less data. The HCE-BNN can handle the forward and inverse problems consistently, that is, to infer unknown responses from known partial responses, or to identify boundary conditions or material parameters from known responses. Compared with the exact results, the test results demonstrate that the proposed method can be applied to both heat conduction forward and inverse problems successfully. In addition, the proposed method can be implemented with the noisy data and gives the corresponding uncertainty quantification for the solutions.
This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete char
We propose a numerical method for the solution of electromagnetic problems on axisymmetric domains, based on a combination of a spectral Fourier approximation in the azimuthal direction with an IsoGeometric Analysis (IGA) approach in the radial and a
A high-order quasi-conservative discontinuous Galerkin (DG) method is proposed for the numerical simulation of compressible multi-component flows. A distinct feature of the method is a predictor-corrector strategy to define the grid velocity. A Lagra
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and no