ترغب بنشر مسار تعليمي؟ اضغط هنا

DVM-CAR: A large-scale automotive dataset for visual marketing research and applications

67   0   0.0 ( 0 )
 نشر من قبل Bowei Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The automotive industry is being transformed by technologies, applications and services ranging from sensors to big data analytics and to artificial intelligence. In this paper, we present our multidisciplinary initiative of creating a publicly available dataset to facilitate the visual-related marketing research and applications in automotive industry such as automotive exterior design, consumer analytics and sales modelling. We are motivated by the fact that there is growing interest in product aesthetics but there is no large-scale dataset available that covers a wide range of variables and information. We summarise the common issues faced by marketing researchers and computer scientists through a user survey study, and design our dataset to alleviate these issues. Our dataset contains 1.4 million images from 899 car models as well as their corresponding car model specification and sales information over more than ten years in the UK market. To the best of our knowledge, this is the very first large-scale automotive dataset which contains images, text and sales information from multiple sources over a long period of time. We describe the detailed data structure and the preparation steps, which we believe has the methodological contribution to the multi-source data fusion and sharing. In addition, we discuss three dataset application examples to illustrate the value of our dataset.



قيم البحث

اقرأ أيضاً

Accurate vehicle localization is a crucial step towards building effective Vehicle-to-Vehicle networks and automotive applications. Yet standard grade GPS data, such as that provided by mobile phones, is often noisy and exhibits significant localizat ion errors in many urban areas. Approaches for accurate localization from imagery often rely on structure-based techniques, and thus are limited in scale and are expensive to compute. In this paper, we present a scalable visual localization approach geared for real-time performance. We propose a hybrid coarse-to-fine approach that leverages visual and GPS location cues. Our solution uses a self-supervised approach to learn a compact road image representation. This representation enables efficient visual retrieval and provides coarse localization cues, which are fused with vehicle ego-motion to obtain high accuracy location estimates. As a benchmark to evaluate the performance of our visual localization approach, we introduce a new large-scale driving dataset based on video and GPS data obtained from a large-scale network of connected dash-cams. Our experiments confirm that our approach is highly effective in challenging urban environments, reducing localization error by an order of magnitude.
This paper introduces Multilingual LibriSpeech (MLS) dataset, a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages, including about 44.5K hours of English and a total of about 6K hours for other languages. Additionally, we provide Language Models (LM) and baseline Automatic Speech Recognition (ASR) models and for all the languages in our dataset. We believe such a large transcribed dataset will open new avenues in ASR and Text-To-Speech (TTS) research. The dataset will be made freely available for anyone at http://www.openslr.org.
Spatial Precipitation Downscaling is one of the most important problems in the geo-science community. However, it still remains an unaddressed issue. Deep learning is a promising potential solution for downscaling. In order to facilitate the research on precipitation downscaling for deep learning, we present the first REAL (non-simulated) Large-Scale Spatial Precipitation Downscaling Dataset, RainNet, which contains 62,424 pairs of low-resolution and high-resolution precipitation maps for 17 years. Contrary to simulated data, this real dataset covers various types of real meteorological phenomena (e.g., Hurricane, Squall, etc.), and shows the physical characters - Temporal Misalignment, Temporal Sparse and Fluid Properties - that challenge the downscaling algorithms. In order to fully explore potential downscaling solutions, we propose an implicit physical estimation framework to learn the above characteristics. Eight metrics specifically considering the physical property of the data set are raised, while fourteen models are evaluated on the proposed dataset. Finally, we analyze the effectiveness and feasibility of these models on precipitation downscaling task. The Dataset and Code will be available at https://neuralchen.github.io/RainNet/.
112 - Yilin Liu , Fuyou Xue , Hui Huang 2021
The ability to perceive the environments in different ways is essential to robotic research. This involves the analysis of both 2D and 3D data sources. We present a large scale urban scene dataset associated with a handy simulator based on Unreal Eng ine 4 and AirSim, which consists of both man-made and real-world reconstruction scenes in different scales, referred to as UrbanScene3D. Unlike previous works that purely based on 2D information or man-made 3D CAD models, UrbanScene3D contains both compact man-made models and detailed real-world models reconstructed by aerial images. Each building has been manually extracted from the entire scene model and then has been assigned with a unique label, forming an instance segmentation map. The provided 3D ground-truth textured models with instance segmentation labels in UrbanScene3D allow users to obtain all kinds of data they would like to have: instance segmentation map, depth map in arbitrary resolution, 3D point cloud/mesh in both visible and invisible places, etc. In addition, with the help of AirSim, users can also simulate the robots (cars/drones)to test a variety of autonomous tasks in the proposed city environment. Please refer to our paper and website(https://vcc.tech/UrbanScene3D/) for further details and applications.
There are substantial instructional videos on the Internet, which enables us to acquire knowledge for completing various tasks. However, most existing datasets for instructional video analysis have the limitations in diversity and scale,which makes t hem far from many real-world applications where more diverse activities occur. Moreover, it still remains a great challenge to organize and harness such data. To address these problems, we introduce a large-scale dataset called COIN for COmprehensive INstructional video analysis. Organized with a hierarchical structure, the COIN dataset contains 11,827 videos of 180 tasks in 12 domains (e.g., vehicles, gadgets, etc.) related to our daily life. With a new developed toolbox, all the videos are annotated effectively with a series of step descriptions and the corresponding temporal boundaries. Furthermore, we propose a simple yet effective method to capture the dependencies among different steps, which can be easily plugged into conventional proposal-based action detection methods for localizing important steps in instructional videos. In order to provide a benchmark for instructional video analysis, we evaluate plenty of approaches on the COIN dataset under different evaluation criteria. We expect the introduction of the COIN dataset will promote the future in-depth research on instructional video analysis for the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا