ﻻ يوجد ملخص باللغة العربية
The Klein paradox refers to counterintuitive reflection or transmission of relativistic particles from a potential barrier, which is a natural consequence of relativistic quantum theory. The realization of this paradox using fundamental particles is nearly impossible because of the high energy barrier that needs to be overcome. Graphene, with emergent gapless fermion excitations, allows for the study of the fermionic Klein paradox. The test of this paradox for bosonic particles, however, remains a challenging problem. Here, we show that the bosonic Klein paradox can be tested in a driven-dissipative magnonic system. By carefully designing the strength of external drivings through spin-orbit torque and internal dissipation of the magnet, both positive-energy states (magnon) and negative energy states (antimagnon) can be dynamically stabilized. The reflection of incident magnons at a barrier can be amplified to be larger than one, accompanied by a backflow antimagnon current. Our findings may benefit the amplification of magnons in spintronic devices and further enable magnonic system as a platform to study relativistic physics.
In 1928, P. Dirac proposed a new wave equation to describe relativistic electrons. Shortly afterwards, O. Klein solved a simple potential step problem for the Dirac equation and stumbled upon an apparent paradox - the potential becomes transparent wh
We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac fermions in presence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific energy
We study a system-bath description in the strong coupling regime where it is not possible to derive a master equation for the reduced density matrix by a direct expansion in the system-bath coupling. A particular example is a bath with significant sp
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatiall
Several platforms are currently being explored for simulating physical systems whose complexity increases faster than polynomially with the number of particles or degrees of freedom in the system. Defects and vacancies in semiconductors or dielectric