ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile Neutrinos as Dark Matter Candidates

88   0   0.0 ( 0 )
 نشر من قبل Joachim Kopp
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Joachim Kopp




اسأل ChatGPT حول البحث

In these brief lecture notes, we introduce sterile neutrinos as dark matter candidates. We discuss in particular their production via oscillations, their radiative decay, as well as possible observational signatures and constraints.



قيم البحث

اقرأ أيضاً

143 - A. Palazzo 2007
In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow (DW) mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from X-ray non-detection and Lyman-alpha forest measurements in the case that sterile neutrinos constitute only a fraction fs of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the DW mechanism, we show how the X-ray and Lyman-alpha results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit fs < 0.7 at the 2 sigma level, rejecting the case of dominant dark matter (fs = 1) at the ~ 3 sigma level.
117 - Yi-Lei Tang , Shou-hua Zhu 2016
In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass $lesssim 100 text{ GeV}$ in a simple model. Unlike the usual standard calculations, the sterile neutrino may fa ll out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling $y_N$ between the Higgs and the sterile neutrino is small, this process gives rise to a larger $Omega_{text{DM}} h^2$ so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.
231 - Wan-lei Guo 2007
In the framework of type II seesaw mechanism we discuss the number of sterile right-handed Majorana neutrinos being the warm dark matter (WDM). When the type II seesaw mass term $M_ u ^{II}$ is far less than the type I seesaw mass term $M_ u ^{I}$, o nly one of three sterile neutrinos may be the WDM particle. On the contrary, the WDM particles may contain all sterile neutrinos. If $M_ u ^{II} sim M_ u ^{I}$, the allowed number is not more than $N - 1$ for $N$ sterile neutrinos. It is worthwhile to stress that three different types of neutrino mass spectrum are permitted when $M_ u ^{II} gg M_ u ^{I}$ and $M_ u ^{II} sim M_ u ^{I}$.
We discovered a chiral enhancement in the production cross-sections of massive spin-2 gravitons, below the electroweak symmetry breaking scale, that makes them ideal dark matter candidates for the freeze-in mechanism. The result is independent on the physics at high scales, and points towards masses in the MeV range. The graviton is, therefore, a warm dark matter particle, as favoured by the small scale galaxy structures. We apply the novel calculation to a Randall-Sundrum model with three branes, showing a significant parameter space where the first two massive gravitons saturate the dark matter relic density.
128 - Brian Shuve , Itay Yavin 2014
We show that the existence of new, light gauge interactions coupled to Standard Model (SM) neutrinos give rise to an abundance of sterile neutrinos through the sterile neutrinos mixing with the SM. Specifically, in the mass range of MeV-GeV and coupl ing of $g sim 10^{-6} - 10^{-2}$, the decay of this new vector boson in the early universe produces a sufficient quantity of sterile neutrinos to account for the observed dark matter abundance. Interestingly, this can be achieved within a natural extension of the SM gauge group, such as a gauged $L_mu-L_tau$ number, without any tree-level coupling between the new vector boson and the sterile neutrino states. Such new leptonic interactions might also be at the origin of the well-known discrepancy associated with the anomalous magnetic moment of the muon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا