ﻻ يوجد ملخص باللغة العربية
Rotating black holes without equatorial reflection symmetry can naturally arise in effective low-energy theories of fundamental quantum gravity, in particular, when parity-violating interactions are introduced. Adopting a theory-agnostic approach and considering a recently proposed Kerr-like black hole model, we investigate the structure and properties of accretion disk around a rotating black hole without reflection symmetry. In the absence of reflection symmetry, the accretion disk is in general a curved surface in shape, rather than a flat disk lying on the equatorial plane. Furthermore, the parameter $epsilon$ that controls the reflection asymmetry would shrink the size of the innermost stable circular orbits, and enhance the efficiency of the black hole in converting rest-mass energy to radiation during accretion. In addition, we find that spin measurements based on the gravitational redshift observations of the disk, assuming a Kerr geometry, may overestimate the true spin values if the central object is actually a Kerr-like black hole with conspicuous equatorial reflection asymmetry.
We present new equilibrium solutions of stationary models of magnetized thick disks (or tori) around Kerr black holes with synchronised scalar hair. The models reported here largely extend our previous results based on constant radial distributions o
An exact and regular solution, describing a couple of charged and spinning black holes, is generated in an external electromagnetic field, via Ernst technique, in Einstein-Maxwell gravity. A wormhole instantonic solution interpolating between the two
Scalar fields around compact objects are of interest for scalar-tensor theories of gravity and dark matter models consisting of a massive scalar, e.g. axions. We study the behaviour of a scalar field around a Kerr black hole with non trivial asymptot
Through detection by low gravitational wave space interferometers, the capture of stars by supermassive black holes will constitute a giant step forward in the understanding of gravitation in strong field. The impact of the perturbations on the motio
It seems surprising that the emissivity properties of the accretion disk (textit{`{a} la} Page and Thorne) surrounding the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black holes of heterotic string theory have not yet been studied. To fill t