ﻻ يوجد ملخص باللغة العربية
Bulk 1T$^prime$-MoTe$_2$ shows a structural phase transition from 1T$^prime$ to Weyl semimetallic (WSM) $ T_{d} $ phase at $sim$ 240 K. This phase transition and transport properties in the two phases have not been investigated on ultra-thin crystals. Here we report electrical transport, $1/f$ noise and Raman studies in ultra-thin 1T$^prime$-MoTe$_2$ ($sim$ 5 to 16 nm thick) field-effect transistors (FETs) devices as a function of temperature. The electrical resistivities for thickness 16 nm and 11 nm show maxima at temperatures 208 K and 178 K, respectively, making a transition from semiconducting to semi-metallic phase, hitherto not observed in bulk samples. Raman frequencies and linewidths for 11nm thick crystal show change around 178 K, attributed to additional contribution to the phonon self-energy due to enhanced electron-phonon interaction in the WSM phase. Further, the resistivity at low-temperature shows an upturn below 20 K along with the maximum in the power spectral density of the low frequency $1/f$ noise. The latter rules out the metal-insulator transition (MIT) being responsible for the upturn of resistivity below 20 K. The low temperature resistivity follows $rho propto 1/T$, changing to $rho propto T$ with increasing temperature supports electron-electron interaction physics at electron-hole symmetric Weyl nodes below 20 K. These observations will pave the way to unravel the properties of WSM state in layered ultra-thin van der Waals materials.
Using elastic neutron scattering on single crystals of MoTe$_{2}$ and Mo$_{1-x}$W$_{x}$Te$_{2}$ ($x lesssim 0.01$), the temperature dependence of the recently discovered T$_{d}^{*}$ phase, present between the low temperature orthorhombic T$_{d}$ phas
Room temperature two-dimensional (2D) ferromagnetism is highly desired in practical spintronics applications. Recently, 1T phase CrTe2 (1T-CrTe2) nanosheets with five and thicker layers have been successfully synthesized, which all exhibit the proper
We experimentally compare two types of interface structures with magnetic and non-magnetic Weyl semimetals. They are the junctions between a gold normal layer and magnetic Weyl semimetal Ti$_2$MnAl, and a ferromagnetic nickel layer and non-magnetic W
Spin-dependent coherent quantum transport through carbon nanotubes (CNT) is studied theoretically within a tight-binding model and the Greens function partitioning technique. End-contacted metal/nanotube/metal systems are modelled and next studied in
Recent discoveries of broad classes of quantum materials have spurred fundamental study of what quantum phases can be reached and stabilized, and have suggested intriguing practical applications based on control over transitions between quantum phase