ترغب بنشر مسار تعليمي؟ اضغط هنا

First Gadolinium Loading to Super-Kamiokande

121   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Sekiya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to improve Super-Kamiokandes neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of Gd2(SO4)3*8H2O(gadolinium sulfate octahydrate) was dissolved into the detectors otherwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loading, water was continuously recirculated at a rate of 60 m3/h, extracting water from the top of the detector and mixing it with concentrated Gd2(SO4)3*8H2O solution to create a 0.02% solution of the Gd compound before injecting it into the bottom of the detector. A clear boundary between the Gd-loaded and pure water was maintained through the loading, enabling monitoring of the loading itself and the spatial uniformity of the Gd concentration over the 35 days it took to reach the top of the detector.During the subsequent commissioning the recirculation rate was increased to 120 m3/h, resulting in a constant and uniform distribution of Gd throughout the detector and water transparency equivalent to that of previous pure-water operation periods. Using an Am-Be neutron calibration source the mean neutron capture time was measured to be $115.6pm0.6$ $mu$s, which corresponds to a Gd concentration of $110.9pm1.4$ (stat.only) ppm, as expected for this level of doping. This paper describes changes made to the water circulation system for this detector upgrade, the Gd loading procedure, detector commissioning, and the first neutron calibration measurements in SK-Gd.

قيم البحث

اقرأ أيضاً

51 - S. Ito , K. Ichimura , Y. Takaku 2020
Chemical extraction using a molecular recognition resin named Empore Radium Rad Disk was developed to improve sensitivity for the low concentration of radium (Ra). Compared with the previous method, the extraction process speed was improved by a fact or of three and the recovery rate for $^{226}$Ra was also improved from 81$pm$4% to $>$99.9%. The sensitivity on the 10$^{-1}$ mBq level was achieved using a high purity germanium detector. This improved method was applied to determine $^{226}$Ra in Gd$_2$(SO$_4$)$_3{cdot}$8H$_2$O which will be used in the Super-Kamiokande Gadolinium project. The improvement and measurement results are reported in this paper.
101 - K. Abe , Y. Hayato , T. Iida 2013
Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics h ave been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT). In this context, we developed an in-situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a detector. The second part describes the modeling of the detector in our Monte Carlo simulation, including in particular the optical properties of its water target and their variability over time. Detailed studies on the water quality are also presented. As a result of this work, we achieved a precision sufficient for physics analysis over a wide energy range (from a few MeV to above a TeV). For example, the charge determination was understood at the 1% level, and the timing resolution was 2.1 nsec at the one-photoelectron charge level and 0.5 nsec at the 100-photoelectron charge level.
92 - H. Nishino , K. Awai , Y. Hayato 2009
A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized f or the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detectors PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0:3mV ~ 3V; 0:2 ~ 2500 pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.
72 - C. Simpson , K. Abe , C. Bronner 2019
Supernova detection is a major objective of the Super-Kamiokande (SK) experiment. In the next stage of SK (SK-Gd), gadolinium (Gd) sulfate will be added to the detector, which will improve the ability of the detector to identify neutrons. A core-coll apse supernova will be preceded by an increasing flux of neutrinos and anti-neutrinos, from thermal and weak nuclear processes in the star, over a timescale of hours; some of which may be detected at SK-Gd. This could provide an early warning of an imminent core-collapse supernova, hours earlier than the detection of the neutrinos from core collapse. Electron anti-neutrino detection will rely on inverse beta decay events below the usual analysis energy threshold of SK, so Gd loading is vital to reduce backgrounds while maximising detection efficiency. Assuming normal neutrino mass ordering, more than 200 events could be detected in the final 12 hours before core collapse for a 15-25 solar mass star at around 200 pc, which is representative of the nearest red supergiant to Earth, $mathrm{alpha}$Ori (Betelgeuse). At a statistical false alarm rate of 1 per century, detection could be up to 10 hours before core collapse, and a pre-supernova star could be detected by SK-Gd up to 600 pc away. A pre-supernova alert could be provided to the astrophysics community following gadolinium loading.
On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collabo ration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا