ﻻ يوجد ملخص باللغة العربية
Qualitative research provides methodological guidelines for observing and studying communities and cultures on online social media platforms. However, such methods demand considerable manual effort from researchers and may be overly focused and narrowed to certain online groups. In this work, we propose a complete solution to accelerate qualitative analysis of problematic online speech -- with a specific focus on opinions emerging from online communities -- by leveraging machine learning algorithms. First, we employ qualitative methods of deep observation for understanding problematic online speech. This initial qualitative study constructs an ontology of problematic speech, which contains social media postings annotated with their underlying opinions. The qualitative study also dynamically constructs the set of opinions, simultaneous with labeling the postings. Next, we collect a large dataset from three online social media platforms (Facebook, Twitter and Youtube) using keywords. Finally, we introduce an iterative data exploration procedure to augment the dataset. It alternates between a data sampler, which balances exploration and exploitation of unlabeled data, the automatic labeling of the sampled data, the manual inspection by the qualitative mapping team and, finally, the retraining of the automatic opinion classifier. We present both qualitative and quantitative results. First, we present detailed case studies of the dynamics of problematic speech in a far-right Facebook group, exemplifying its mutation from conservative to extreme. Next, we show that our method successfully learns from the initial qualitatively labeled and narrowly focused dataset, and constructs a larger dataset. Using the latter, we examine the dynamics of opinion emergence and co-occurrence, and we hint at some of the pathways through which extreme opinions creep into the mainstream online discourse.
In an increasingly polarized world, demagogues who reduce complexity down to simple arguments based on emotion are gaining in popularity. Are opinions and online discussions falling into demagoguery? In this work, we aim to provide computational tool
In online debates individual arguments support or attack each other, leading to some subset of arguments being considered more relevant than others. However, in large discussions readers are often forced to sample a subset of the arguments being put
This paper studies the dynamics of opinion formation and polarization in social media. We investigate whether users stance concerning contentious subjects is influenced by the online discussions they are exposed to and interactions with users support
After building a classifier with modern tools of machine learning we typically have a black box at hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the most likely label of a given unseen data point. H
The novel coronavirus pandemic continues to ravage communities across the US. Opinion surveys identified importance of political ideology in shaping perceptions of the pandemic and compliance with preventive measures. Here, we use social media data t