ﻻ يوجد ملخص باللغة العربية
For many decades, research in speech technologies has focused upon improving reliability. With this now meeting user expectations for a range of diverse applications, speech technology is today omni-present. As result, a focus on security and privacy has now come to the fore. Here, the research effort is in its relative infancy and progress calls for greater, multidisciplinary collaboration with security, privacy, legal and ethical experts among others. Such collaboration is now underway. To help catalyse the efforts, this paper provides a high-level overview of some related research. It targets the non-speech audience and describes the benchmarking methodology that has spearheaded progress in traditional research and which now drives recent security and privacy initiatives related to voice biometrics. We describe: the ASVspoof challenge relating to the development of spoofing countermeasures; the VoicePrivacy initiative which promotes research in anonymisation for privacy preservation.
The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulner
The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and
Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G
Coronavirus disease 2019, i.e. COVID-19 has imposed the public health measure of keeping social distancing for preventing mass transmission of COVID-19. For monitoring the social distancing and keeping the trace of transmission, we are obligated to d
Federated learning (FL) allows a server to learn a machine learning (ML) model across multiple decentralized clients that privately store their own training data. In contrast with centralized ML approaches, FL saves computation to the server and does