ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Representation Sprachbund For Multilingual Pre-Training

117   0   0.0 ( 0 )
 نشر من قبل Yimin Fan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multilingual pre-trained models have demonstrated their effectiveness in many multilingual NLP tasks and enabled zero-shot or few-shot transfer from high-resource languages to low resource ones. However, due to significant typological differences and contradictions between some languages, such models usually perform poorly on many languages and cross-lingual settings, which shows the difficulty of learning a single model to handle massive diverse languages well at the same time. To alleviate this issue, we present a new multilingual pre-training pipeline. We propose to generate language representation from multilingual pre-trained models and conduct linguistic analysis to show that language representation similarity reflect linguistic similarity from multiple perspectives, including language family, geographical sprachbund, lexicostatistics and syntax. Then we cluster all the target languages into multiple groups and name each group as a representation sprachbund. Thus, languages in the same representation sprachbund are supposed to boost each other in both pre-training and fine-tuning as they share rich linguistic similarity. We pre-train one multilingual model for each representation sprachbund. Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.

قيم البحث

اقرأ أيضاً

102 - Yiheng Xu , Tengchao Lv , Lei Cui 2021
Multimodal pre-training with text, layout, and image has achieved SOTA performance for visually-rich document understanding tasks recently, which demonstrates the great potential for joint learning across different modalities. In this paper, we prese nt LayoutXLM, a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. To accurately evaluate LayoutXLM, we also introduce a multilingual form understanding benchmark dataset named XFUND, which includes form understanding samples in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese), and key-value pairs are manually labeled for each language. Experiment results show that the LayoutXLM model has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUND dataset. The pre-trained LayoutXLM model and the XFUND dataset are publicly available at https://aka.ms/layoutxlm.
Pre-trained multilingual language models such as mBERT have shown immense gains for several natural language processing (NLP) tasks, especially in the zero-shot cross-lingual setting. Most, if not all, of these pre-trained models rely on the masked-l anguage modeling (MLM) objective as the key language learning objective. The principle behind these approaches is that predicting the masked words with the help of the surrounding text helps learn potent contextualized representations. Despite the strong representation learning capability enabled by MLM, we demonstrate an inherent limitation of MLM for multilingual representation learning. In particular, by requiring the model to predict the language-specific token, the MLM objective disincentivizes learning a language-agnostic representation -- which is a key goal of multilingual pre-training. Therefore to encourage better cross-lingual representation learning we propose the DICT-MLM method. DICT-MLM works by incentivizing the model to be able to predict not just the original masked word, but potentially any of its cross-lingual synonyms as well. Our empirical analysis on multiple downstream tasks spanning 30+ languages, demonstrates the efficacy of the proposed approach and its ability to learn better multilingual representations.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-tra in a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple low-resource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pre-training corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Recently, mT5 - a massively multilingual version of T5 - leveraged a unified text-to-text format to attain state-of-the-art results on a wide variety of multilingual NLP tasks. In this paper, we investigate the impact of incorporating parallel data i nto mT5 pre-training. We find that multi-tasking language modeling with objectives such as machine translation during pre-training is a straightforward way to improve performance on downstream multilingual and cross-lingual tasks. However, the gains start to diminish as the model capacity increases, suggesting that parallel data might not be as essential for larger models. At the same time, even at larger model sizes, we find that pre-training with parallel data still provides benefits in the limited labelled data regime.
181 - Xin Wang , Yasheng Wang , Fei Mi 2021
Code representation learning, which aims to encode the semantics of source code into distributed vectors, plays an important role in recent deep-learning-based models for code intelligence. Recently, many pre-trained language models for source code ( e.g., CuBERT and CodeBERT) have been proposed to model the context of code and serve as a basis for downstream code intelligence tasks such as code search, code clone detection, and program translation. Current approaches typically consider the source code as a plain sequence of tokens, or inject the structure information (e.g., AST and data-flow) into the sequential model pre-training. To further explore the properties of programming languages, this paper proposes SynCoBERT, a syntax-guided multi-modal contrastive pre-training approach for better code representations. Specially, we design two novel pre-training objectives originating from the symbolic and syntactic properties of source code, i.e., Identifier Prediction (IP) and AST Edge Prediction (TEP), which are designed to predict identifiers, and edges between two nodes of AST, respectively. Meanwhile, to exploit the complementary information in semantically equivalent modalities (i.e., code, comment, AST) of the code, we propose a multi-modal contrastive learning strategy to maximize the mutual information among different modalities. Extensive experiments on four downstream tasks related to code intelligence show that SynCoBERT advances the state-of-the-art with the same pre-training corpus and model size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا