ﻻ يوجد ملخص باللغة العربية
X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in the black hole transient MAXI J1820+070 during its hard and hard-intermediate states. Contrarily to the previous applications of this model, the Compton reflection component has been taken into account. We use eight broadband X-rays spectra, including NuSTAR, NICER and Swift data, providing a total spectral coverage of 0.8-190 keV. The data were directly fitted with the JED-SAD model. Our results suggest that the optically thick disk (i.e. the SAD) does not extend down to the ISCO in any of the considered epochs. In particular, as the system evolves towards the hard/intermediate state, we find that the inner radius decreases from $sim$60 R$_{rm G}$ in the first observation down to $sim$30 R$_{rm G}$ in the last one. This trend is accompanied by an increase of the mass-accretion rate. In all hard-intermediate state observations, two reflection components, characterized by different values of ionization, are required to adequately explain the data. These components likely originate from different regions of the SAD. We show that a flared outer disk could, in principle, explain the double reflection component.
[Abridged] Context: We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise thr
We study X-ray spectra from the outburst rise of the accreting black-hole binary MAXI J1820+070. We find that models having the disk inclinations within those of either the binary or the jet imply significant changes of the accretion disk inner radiu
The nature and geometry of the accretion flow in the low/hard state of black hole binaries is currently controversial. While most properties are generally explained in the truncated disc/hot inner flow model, the detection of a broad residual around
We report on a detailed optical spectroscopic follow-up of the black hole transient MAXI J1820+070 (ASASSN-18ey). The observations cover the main part of the X-ray binary outburst, when the source alternated between hard and soft states following the
We report on a multi-epoch campaign of rapid optical/X-ray timing observations of the superbright 2018 outburst of MAXI J1820+070, a black hole low-mass X-ray binary system. The observations spanned 80 days in the initial hard-state, and were taken w