ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting packing efficiency of binary hard sphere systems to their intermediate range structure

85   0   0.0 ( 0 )
 نشر من قبل Walter Kob
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using computed x-ray tomography we determine the three dimensional (3d) structure of binary hard sphere mixtures as a function of composition and size ratio of the particles, q. Using a recently introduced four-point correlation function we reveal that this 3d structure has on intermediate and large length scales a surprisingly regular order, the symmetry of which depends on q. The related structural correlation length has a minimum at the composition at which the packing fraction is highest. At this composition also the number of different local particle arrangements has a maximum, indicating that efficient packing of particles is associated with a structure that is locally maximally disordered.



قيم البحث

اقرأ أيضاً

In our previous publication (Ref. 1) we have shown that the data for the normalized diffusion coefficient of the polymers, $D_p/D_{p0}$, falls on a master curve when plotted as a function of $h/lambda_d$, where $h$ is the mean interparticle distance and $lambda_d$ is a dynamic length scale. In the present note we show that also the normalized diffusion coefficient of the nanoparticles, $D_N/D_{N0}$, collapses on a master curve when plotted as a function of $h/R_h$, where $R_h$ is the hydrodynamic radius of the nanoparticles.
298 - Matthieu Wyart 2012
The requirement that packings of hard particles, arguably the simplest structural glass, cannot be compressed by rearranging their network of contacts is shown to yield a new constraint on their microscopic structure. This constraint takes the form a bound between the distribution of contact forces P(f) and the pair distribution function g(r): if P(f) sim f^{theta} and g(r) sim (r-{sigma})^(-{gamma}), where {sigma} is the particle diameter, one finds that {gamma} geq 1/(2+{theta}). This bound plays a role similar to those found in some glassy materials with long-range interactions, such as the Coulomb gap in Anderson insulators or the distribution of local fields in mean-field spin glasses. There is ground to believe that this bound is saturated, offering an explanation for the presence of avalanches of rearrangements with power-law statistics observed in packings.
62 - Shibu Saw , Jeppe C. Dyre 2020
Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, {it J. Chem. Phys.} {bf 152}, 011102 (2020)] with isomorph theory, from a single simulation, the structure of a single-component Lennard-Jones (LJ) system is obtain ed at an arbitrary state point in almost the whole liquid region of the temperature-density phase diagram. The LJ system exhibits two temperature range where the vant Hoffs assumption that energetic and entropic forces are temperature independent is valid. A method to evaluate the structure at an arbitrary state point along an isochore from the knowledge of structures at two temperatures on the isochore is also discussed. We argue that, in general, the structure of any hidden scale-invariant system obeying the vant Hoffs assumption in the whole range of temperatures can be determined in the whole liquid region of the phase diagram from only a single simulation.
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and D. M. Heyes, Phys. Rev. E 95, 062104 (2017)], combines accurate molecular-dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation. A comparison of the direct correlation functions obtained with the present scheme with those derived from theoretical results stemming from the Percus-Yevick (PY) closure and the so-called rational-function approximation (RFA) is performed. The density dependence of the leading poles of the Fourier transforms of the total correlation functions and the decay of the pair correlation functions of the mixtures are also addressed and compared to the predictions of the two theoretical approximations. A very good overall agreement between the results of the present scheme and those of the RFA is found, thus suggesting that the latter (which is an improvement over the PY approximation) can safely be used to predict reasonably well the long-range behavior, including the structural crossover, of the correlation functions of additive binary hard-sphere mixtures.
131 - B. Cui , R. Milkus , A. Zaccone 2017
Amorphous solids or glasses are known to exhibit stretched-exponential decay over broad time intervals in several of their macroscopic observables: intermediate scattering function, dielectric relaxation modulus, time-elastic modulus etc. This behavi our is prominent especially near the glass transition. In this Letter we show, on the example of dielectric relaxation, that stretched-exponential relaxation is intimately related to the peculiar lattice dynamics of glasses. By reformulating the Lorentz model of dielectric matter in a more general form, we express the dielectric response as a function of the vibrational density of states (DOS) for a random assembly of spherical particles interacting harmonically with their nearest-neighbours. Surprisingly we find that near the glass transition for this system (which coincides with the Maxwell rigidity transition), the dielectric relaxation is perfectly consistent with stretched-exponential behaviour with Kohlrausch exponents $0.56 < beta < 0.65$, which is the range where exponents are measured in most experimental systems. Crucially, the root cause of stretched-exponential relaxation can be traced back to soft modes (boson-peak) in the DOS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا