ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference frame to gain rotation invariance, the proposed descriptor achieves the rotation invariance by recent technologies of group equivariant feature learning, which brings more robustness to point density and noise. Meanwhile, the descriptor in YOHO also has a rotation equivariant part, which enables us to estimate the registration from just one correspondence hypothesis. Such property reduces the searching space for feasible transformations, thus greatly improves both the accuracy and the efficiency of YOHO. Extensive experiments show that YOHO achieves superior performances with much fewer needed RANSAC iterations on four widely-used datasets, the 3DMatch/3DLoMatch datasets, the ETH dataset and the WHU-TLS dataset. More details are shown in our project page: https://hpwang-whu.github.io/YOHO/.
3D point-cloud-based perception is a challenging but crucial computer vision task. A point-cloud consists of a sparse, unstructured, and unordered set of points. To understand a point-cloud, previous point-based methods, such as PointNet++, extract v
This paper proposes a correspondence-free method for point cloud rotational registration. We learn an embedding for each point cloud in a feature space that preserves the SO(3)-equivariance property, enabled by recent developments in equivariant neur
A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods
Spatiotemporal action localization requires the incorporation of two sources of information into the designed architecture: (1) temporal information from the previous frames and (2) spatial information from the key frame. Current state-of-the-art app