ﻻ يوجد ملخص باللغة العربية
We compute correlation functions, specifically 1-point and 2-point functions, in holographic boundary conformal field theory (BCFT) using geodesic approximation. The holographic model consists of a massive scalar field coupled to a Karch-Randall brane -- a rigid boundary in the bulk AdS space. Geodesic approximation requires the inclusion of paths reflecting off of this brane, which we show in detail. For the 1-point function, we find agreement between geodesic approximation and the harder $Delta$-exact calculation, and we give a novel derivation of boundary entropy using the result. For the 2-point function, we find a factorization phase transition and a mysterious set of anomalous boundary-localized BCFT operators. We also discuss some puzzles concerning these operators.
We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal
In this work, we study the $frac{1}{8}$-BPS heavy-heavy-light-light correlators in the D1D5 CFT and its holographic dual. On the field theory side, we compute the fermionic four-point correlators at the free orbifold point. On the dual gravity side,
We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions i
We consider fermion correlators in non-abelian holographic superconductors. The spectral function of the fermions exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. These fea
We give a comment on the possible role of the sliver state in the generic boundary conformal field theory. We argue that for each Cardy state, there exists at least one projector in the string field theory.