ﻻ يوجد ملخص باللغة العربية
We present new developments and comparisons of competing inspiral and waveform models for highly eccentric non-spinning extreme and intermediate mass-ratio inspirals (EMRIs and IMRIs). Starting from our high eccentricity self-force library, we apply the near-identity transform (NIT) technique to rapidly compute highly eccentric self-forced inspirals for the first time. Upon evaluating our approximate NIT results via comparison with full self-force inspirals, we couple our accurate and streamlined inspiral data to potential waveform generation schemes. We find that, although high eccentricity strains the NIT method, NIT inspirals are consistent with full self-force inspirals for EMRIs. However, our NIT implementation (at 1st post-adiabatic order) is not able to achieve LISA-motivated accuracy goals for highly eccentric IMRIs. Our most sophisticated waveforms are devised through a new technique that efficiently connects NIT orbital parameters to Teukolsky amplitudes and phases. We compare these sophisticated Teukolsky waveforms to those with synthesized (summing over harmonics) amplitudes based on a kludge. We find that, assuming identical worldlines (so that dephasing is negligible), kludge waveforms compare favorably to Teukolsky waveforms for non-spinning bodies.
We present a new, fast method for computing the inspiral trajectory and gravitational waves from extreme mass-ratio inspirals that can incorporate all known (and future) self-force results. Using near-identity (averaging) transformations we formulate
We compute adiabatic waveforms for extreme mass-ratio inspirals (EMRIs) by stitching together a long inspiral waveform from a sequence of waveform snapshots, each of which corresponds to a particular geodesic orbit. We show that the complicated total
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met
We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the rotating black hole and the orbit of an in
We introduce a new kludge scheme to model the dynamics of generic extreme mass-ratio inspirals (stellar compact objects spiraling into a spinning supermassive black hole) and to produce the gravitational waveforms that describe the gravitational-wave