ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Phases in large-N hybrid Brownian circuits with long-range couplings

194   0   0.0 ( 0 )
 نشر من قبل Subhayan Sahu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of power-law long-range couplings on measurement-induced phases and transitions in tractable large-$N$ models, including a Brownian qubit model and a Brownian SYK model. In one dimension, the long-range coupling is irrelevant for $alpha>3/2$, with $alpha$ being the power-law exponent, thus the volume-law and area-law entanglement phases and the phase transition remain intact. For $alpha<3/2$ the long-range coupling becomes relevant, leading to a nontrivial dynamical exponent at the measurement-induced phase transition. More interestingly, for $alpha<1$ the entanglement pattern receives a sub-volume correction for both area-law and volume-law phases. The volume-law phase with such a sub-volume correction realizes a novel quantum error correcting code whose code distance scales as $L^{2-2alpha}$. We further extend the calculation to a quadratic SYK model, where two distinct fractal entangled phases emerge, leading to a complete phase diagram of the long-range free fermion model under monitoring.

قيم البحث

اقرأ أيضاً

The competition between scrambling unitary evolution and projective measurements leads to a phase transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of this transition is fundamentally altered by the presence of long-range, power-law interactions. For sufficiently weak power-laws, the measurement-induced transition is described by conformal field theory, analogous to short-range-interacting hybrid circuits. However, beyond a critical power-law, we demonstrate that long-range interactions give rise to a continuum of non-conformal universality classes, with continuously varying critical exponents. We numerically determine the phase diagram for a one-dimensional, long-range-interacting hybrid circuit model as a function of the power-law exponent and the measurement rate. Finally, by using an analytic mapping to a long-range quantum Ising model, we provide a theoretical understanding for the critical power-law.
Competition between unitary dynamics that scrambles quantum information non-locally and local measurements that probe and collapse the quantum state can result in a measurement-induced entanglement phase transition. Here we study this phenomenon in a n analytically tractable all-to-all Brownian hybrid circuit model composed of qubits. The system is initially entangled with an equal sized reference, and the subsequent hybrid system dynamics either partially preserves or totally destroys this entanglement depending on the measurement rate. Our approach can access a variety of entropic observables which are distinguished by the averaging procedure, and for concreteness we focus on a particular purity quantity for which the averaging is particularly simple. We represent the purity as a path integral coupling four replicas with twisted boundary conditions. Saddle-point analysis reveals a second-order phase transition corresponding to replica permutation symmetry breaking below a critical measurement rate. The transition is mean-field-like and we characterize the critical properties near the transition in terms of a simple Ising field theory in 0+1 dimensions. In addition to studying the purity of the entire system, we study subsystem purities and relate these results to manifestations of quantum error correction in the model. We also comment on the experimental feasibility for simulating this averaged purity, and corroborate our results with exact diagonalization for modest system sizes.
Entanglement transitions in quantum dynamics present a novel class of phase transitions in non-equilibrium systems. When a many-body quantum system undergoes unitary evolution interspersed with monitored random measurements, the steady-state can exhi bit a phase transition between volume and area-law entanglement. There is a correspondence between measurement-induced transitions in non-unitary quantum circuits in $d$ spatial dimensions and classical statistical mechanical models in $d+1$ dimensions. In certain limits these models map to percolation, but there is analytical and numerical evidence to suggest that away from these limits the universality class should generically be distinct from percolation. Intriguingly, despite these arguments, numerics on 1D qubit circuits give bulk exponents which are nonetheless close to those of 2D percolation, with possible differences in surface behavior. In the first part of this work we study the critical properties of 2D Clifford circuits. In the bulk, we find many properties suggested by the percolation picture, including matching bulk exponents, and an inverse power-law for the critical entanglement growth, $S(t,L) sim L(1 - a/t)$, which saturates to an area-law. We then utilize a graph-state based algorithm to analyze in 1D and 2D the critical properties of entanglement clusters in the steady state. We show that in a model with a simple geometric map to percolation, the projective transverse field Ising model, the entanglement clusters are governed by percolation surface exponents. However, in the Clifford models we find large deviations in the cluster exponents from those of surface percolation, highlighting the breakdown of any possible geometric map to percolation. Given the evidence for deviations from the percolation universality class, our results raise the question of why nonetheless many bulk properties behave similarly to percolation.
Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili brium dynamics of the one-dimensional transverse Ising model with algebraic long-range exchange coupling. Using a state of the art tensor-network approach, complemented by analytic calculations and considering various observables, we show that a weak form of causality emerges, characterized by non-universal dynamical exponents. While the local spin and spin correlation causal edges are sub-ballistic, the causal region has a rich internal structure, which, depending on the observable, displays ballistic or super-ballistic features. In contrast, the causal region of entanglement entropy is featureless and its edge is always ballistic, irrespective of the interaction range. Our results shed light on the propagation of information in long-range interacting lattice models and pave the way to future experiments, which are discussed.
We prove the existence of non-equilibrium phases of matter in the prethermal regime of periodically-driven, long-range interacting systems, with power-law exponent $alpha > d$, where $d$ is the dimensionality of the system. In this context, we predic t the existence of a disorder-free, prethermal discrete time crystal in one dimension -- a phase strictly forbidden in the absence of long-range interactions. Finally, using a combination of analytic and numerical methods, we highlight key experimentally observable differences between such a prethermal time crystal and its many-body localized counterpart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا