ﻻ يوجد ملخص باللغة العربية
We show that kinematics of charged particles allows us to model the growth of particles energy by consecutive particle-splits, once a spherical mirror as a perfectly reflective boundary is placed outside a charged black hole. We consider a charged version of the Penrose process, in which a charged particle decays into two fragments, one of them has negative energy and the other has positive energy that is larger than that of the parent particle. The confinement system with the mirror makes the particles energy amplified each time a split of the parent particle occurs. Thus, the energy is a monotonically increasing function of time. However, the energy does not increase unboundedly, but rather asymptotes to a certain finite value, implying no instability of the system in this respect.
The Penrose process of an extremal braneworld black hole is studied. We analyze the Penrose process by two massive spinning particles collide near the horizon. By calculating the maximum energy extraction efficiency of this process, it turns out that
It is shown here that a cloud of charged particles could in principle absorb energy from gravitational waves (GWs) incident upon it, resulting in wave attenuation. This could in turn have implications for the interpretation of future data from early universe GWs.
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the col
We consider the problem of finding all space-time metrics for which all plane-wave Penrose limits are diagonalisable plane waves. This requirement leads to a conformally invariant differential condition on the Weyl spinor which we analyse for differe
Energy extraction from a rotating or charged black hole is one of fascinating issues in general relativity. The collisional Penrose process is one of such extraction mechanisms and has been reconsidered intensively since Banados, Silk and West pointe