ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Splitting and Aggregation Network for Hyperspectral Face Super-Resolution

92   0   0.0 ( 0 )
 نشر من قبل Junjun Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions, such as low-light environment and spoofing attacks. However, the dense spectral bands of hyperspectral face images come at the cost of limited amount of photons reached a narrow spectral window on average, which greatly reduces the spatial resolution of hyperspectral face images. In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution (HFSR), especially when the training samples are very limited. Benefiting from the amount of spectral bands, in which each band can be seen as an image, we present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples. In the shallow layers, we split the hyperspectral image into different spectral groups and take each of them as an individual training sample (in the sense that each group will be fed into the same network). Then, we gradually aggregate the neighbor bands at the deeper layers to exploit the spectral correlations. By this spectral splitting and aggregation strategy (SSAS), we can divide the original hyperspectral image into multiple samples to support the efficient training of the network and effectively exploit the spectral correlations among spectrum. To cope with the challenge of small training sample size (S3) problem, we propose to expand the training samples by a self-representation model and symmetry-induced augmentation. Experiments show that the introduced SSANet can well model the joint correlations of spatial and spectral information. By expanding the training samples, our proposed method can effectively alleviate the S3 problem. The comparison results demonstrate that our proposed method can outperform the state-of-the-arts.


قيم البحث

اقرأ أيضاً

Face super-resolution (SR) has become an indispensable function in security solutions such as video surveillance and identification system, but the distortion in facial components is a great challenge in it. Most state-of-the-art methods have utilize d facial priors with deep neural networks. These methods require extra labels, longer training time, and larger computation memory. In this paper, we propose a novel Edge and Identity Preserving Network for Face SR Network, named as EIPNet, to minimize the distortion by utilizing a lightweight edge block and identity information. We present an edge block to extract perceptual edge information, and concatenate it to the original feature maps in multiple scales. This structure progressively provides edge information in reconstruction to aggregate local and global structural information. Moreover, we define an identity loss function to preserve identification of SR images. The identity loss function compares feature distributions between SR images and their ground truth to recover identities in SR images. In addition, we provide a luminance-chrominance error (LCE) to separately infer brightness and color information in SR images. The LCE method not only reduces the dependency of color information by dividing brightness and color components but also enables our network to reflect differences between SR images and their ground truth in two color spaces of RGB and YUV. The proposed method facilitates the proposed SR network to elaborately restore facial components and generate high quality 8x scaled SR images with a lightweight network structure. Furthermore, our network is able to reconstruct an 128x128 SR image with 215 fps on a GTX 1080Ti GPU. Extensive experiments demonstrate that our network qualitatively and quantitatively outperforms state-of-the-art methods on two challenging datasets: CelebA and VGGFace2.
220 - Wenbo Li , Xin Tao , Taian Guo 2020
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame. In this process, inter- and intra-frames are the key sources for exploiting temporal and spatial information. However , there are a couple of limitations for existing VSR methods. First, optical flow is often used to establish temporal correspondence. But flow estimation itself is error-prone and affects recovery results. Second, similar patterns existing in natural images are rarely exploited for the VSR task. Motivated by these findings, we propose a temporal multi-correspondence aggregation strategy to leverage similar patches across frames, and a cross-scale nonlocal-correspondence aggregation scheme to explore self-similarity of images across scales. Based on these two new modules, we build an effective multi-correspondence aggregation network (MuCAN) for VSR. Our method achieves state-of-the-art results on multiple benchmark datasets. Extensive experiments justify the effectiveness of our method.
This paper presents a Neural Aggregation Network (NAN) for video face recognition. The network takes a face video or face image set of a person with a variable number of face images as its input, and produces a compact, fixed-dimension feature repres entation for recognition. The whole network is composed of two modules. The feature embedding module is a deep Convolutional Neural Network (CNN) which maps each face image to a feature vector. The aggregation module consists of two attention blocks which adaptively aggregate the feature vectors to form a single feature inside the convex hull spanned by them. Due to the attention mechanism, the aggregation is invariant to the image order. Our NAN is trained with a standard classification or verification loss without any extra supervision signal, and we found that it automatically learns to advocate high-quality face images while repelling low-quality ones such as blurred, occluded and improperly exposed faces. The experiments on IJB-A, YouTube Face, Celebrity-1000 video face recognition benchmarks show that it consistently outperforms naive aggregation methods and achieves the state-of-the-art accuracy.
General image super-resolution techniques have difficulties in recovering detailed face structures when applying to low resolution face images. Recent deep learning based methods tailored for face images have achieved improved performance by jointly trained with additional task such as face parsing and landmark prediction. However, multi-task learning requires extra manually labeled data. Besides, most of the existing works can only generate relatively low resolution face images (e.g., $128times128$), and their applications are therefore limited. In this paper, we introduce a novel SPatial Attention Residual Network (SPARNet) built on our newly proposed Face Attention Units (FAUs) for face super-resolution. Specifically, we introduce a spatial attention mechanism to the vanilla residual blocks. This enables the convolutional layers to adaptively bootstrap features related to the key face structures and pay less attention to those less feature-rich regions. This makes the training more effective and efficient as the key face structures only account for a very small portion of the face image. Visualization of the attention maps shows that our spatial attention network can capture the key face structures well even for very low resolution faces (e.g., $16times16$). Quantitative comparisons on various kinds of metrics (including PSNR, SSIM, identity similarity, and landmark detection) demonstrate the superiority of our method over current state-of-the-arts. We further extend SPARNet with multi-scale discriminators, named as SPARNetHD, to produce high resolution results (i.e., $512times512$). We show that SPARNetHD trained with synthetic data cannot only produce high quality and high resolution outputs for synthetically degraded face images, but also show good generalization ability to real world low quality face images.
117 - Guangwei Gao , Lei Tang , Yi Yu 2021
With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tas ks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا