ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology of augmented Bergman complexes

66   0   0.0 ( 0 )
 نشر من قبل Victor Reiner
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The augmented Bergman complex of a matroid is a simplicial complex introduced recently in work of Braden, Huh, Matherne, Proudfoot and Wang. It may be viewed as a hybrid of two well-studied pure shellable simplicial complexes associated to matroids: the independent set complex and Bergman complex. It is shown here that the augmented Bergman complex is also shellable, via two different families of shelling orders. Furthermore, comparing the description of its homotopy type induced from the two shellings re-interprets a known convolution formula counting bases of the matroid. The representation of the automorphism group of the matroid on the homology of the augmented Bergman complex turns out to have a surprisingly simple description. This last fact is generalized to closures beyond those coming from a matroid.

قيم البحث

اقرأ أيضاً

We introduce new methods for understanding the topology of $Hom$ complexes (spaces of homomorphisms between two graphs), mostly in the context of group actions on graphs and posets. We view $Hom(T,-)$ and $Hom(-,G)$ as functors from graphs to posets, and introduce a functor $(-)^1$ from posets to graphs obtained by taking atoms as vertices. Our main structural results establish useful interpretations of the equivariant homotopy type of $Hom$ complexes in terms of spaces of equivariant poset maps and $Gamma$-twisted products of spaces. When $P = F(X)$ is the face poset of a simplicial complex $X$, this provides a useful way to control the topology of $Hom$ complexes. Our foremost application of these results is the construction of new families of `test graphs with arbitrarily large chromatic number - graphs $T$ with the property that the connectivity of $Hom(T,G)$ provides the best possible lower bound on the chromatic number of $G$. In particular we focus on two infinite families, which we view as higher dimensional analogues of odd cycles. The family of `spherical graphs have connections to the notion of homomorphism duality, whereas the family of `twisted toroidal graphs lead us to establish a weakened version of a conjecture (due to Lov{a}sz) relating topological lower bounds on chromatic number to maximum degree. Other structural results allow us to show that any finite simplicial complex $X$ with a free action by the symmetric group $S_n$ can be approximated up to $S_n$-homotopy equivalence as $Hom(K_n,G)$ for some graph $G$; this is a generalization of a result of Csorba. We conclude the paper with some discussion regarding the underlying categorical notions involved in our study.
An injective word over a finite alphabet $V$ is a sequence $w=v_1v_2cdots v_t$ of distinct elements of $V$. The set $mathrm{inj}(V)$ of injective words on $V$ is partially ordered by inclusion. A complex of injective words is the order complex $Delta (W)$ of a subposet $W subset mathrm{inj}(V)$. Complexes of injective words arose recently in applications of algebraic topology to neuroscience, and are of independent interest in topology and combinatorics. In this article we mainly study Permutation Complexes, i.e. complexes of injective words $Delta(W)$, where $W$ is the downward closed subposet of $mathrm{inj}(V)$ generated by a set of permutations of $V$. In particular, we determine the homotopy type of $Delta(W)$ when $W$ is generated by two permutations, and prove that any stable homotopy type is realizable by a permutation complex. We describe a homotopy decomposition for the complex of injective words $Gamma(K)$ associated with a simplicial complex $K$, and point out a connection to a result of Randal-Williams and Wahl. Finally, we discuss some probabilistic aspects of random permutation complexes.
Following Gromov, the coboundary expansion of building-like complexes is studied. In particular, it is shown that for any $n geq 1$, there exists a constant $epsilon(n)>0$ such that for any $0 leq k <n$ the $k$-th coboundary expansion constant of any $n$-dimensional spherical building is at least $epsilon(n)$.
85 - Minki Kim , Alan Lew 2021
Let $K$ be a simplicial complex on vertex set $V$. $K$ is called $d$-Leray if the homology groups of any induced subcomplex of $K$ are trivial in dimensions $d$ and higher. $K$ is called $d$-collapsible if it can be reduced to the void complex by seq uentially removing a simplex of size at most $d$ that is contained in a unique maximal face. We define the $t$-tolerance complex of $K$, $mathcal{T}_t(K)$, as the simplicial complex on vertex set $V$ whose simplices are formed as the union of a simplex in $K$ and a set of size at most $t$. We prove that for any $d$ and $t$ there exists a positive integer $h(t,d)$ such that, for every $d$-collapsible complex $K$, the $t$-tolerance complex $mathcal{T}_t(K)$ is $h(t,d)$-Leray. The definition of the complex $mathcal{T}_t(K)$ is motivated by results of Montejano and Oliveros on tolerant
87 - Anton Dochtermann 2007
It is shown that if T is a connected nontrivial graph and X is an arbitrary finite simplicial complex, then there is a graph G such that the complex Hom(T,G) is homotopy equivalent to X. The proof is constructive, and uses a nerve lemma. Along the wa y several results regarding Hom complexes, exponentials, and subdivision are established that may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا