ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Role of Low Temperature Vacuum Baking on Photon Lifetimes in Superconducting Niobium 3-D Resonators

99   0   0.0 ( 0 )
 نشر من قبل Daniel Bafia
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a potentially dramatic source of quantum decoherence in three-dimensional niobium superconducting resonators and in two-dimensional transmon qubits that utilize oxidized niobium: an aggravation of two-level system (TLS) induced losses driven by vacuum baking at temperatures and durations typically used in transmon qubit fabrication. By coupling RF measurements on cavities with time-of-flight secondary ion mass spectrometry studies on an SRF cavity cutout, we find that modest vacuum baking (150-200~$^{circ}$C for 5~min-11~hrs) produces a partially depleted native niobium oxide which likely contains a large concentration of oxygen vacancies that drive TLS losses. Continued baking is found to eliminate this depleted layer and mediate these additional losses.

قيم البحث

اقرأ أيضاً

We report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 {deg}C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2-treated at 120 {deg}C and at140 {deg}C, showed no degradation in accelerating gradient, however the accelerating gradient was degraded by 25 with a 160 {deg}C N2 treatment. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb_2O5, NbO and NbN(1-x)Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.
We describe an experimental protocol to characterize magnetic field dependent microwave losses in superconducting niobium microstrip resonators. Our approach provides a unified view that covers two well-known magnetic field dependent loss mechanisms: quasiparticle generation and vortex motion. We find that quasiparticle generation is the dominant loss mechanism for parallel magnetic fields. For perpendicular fields, the dominant loss mechanism is vortex motion or switches from quasiparticle generation to vortex motion, depending on cooling procedures. In particular, we introduce a plot of the quality factor versus the resonance frequency as a general method for identifying the dominant loss mechanism. We calculate the expected resonance frequency and the quality factor as a function of the magnetic field by modeling the complex resistivity. Key parameters characterizing microwave loss are estimated from comparisons of the observed and expected resonator properties. Based on these key parameters, we find a niobium resonator whose thickness is similar to its penetration depth is the best choice for X-band electron spin resonance applications. Finally, we detect partial release of the Meissner current at the vortex penetration field, suggesting that the interaction between vortices and the Meissner current near the edges is essential to understand the magnetic field dependence of the resonator properties.
In this work, we find that Al cladding on Nb microstrip resonators is an efficient way to suppress nonlinear responses induced by local Joule heating, resulting in improved microwave power handling capability. This improvement is likely due to the pr oximity effect between the Al and the Nb layers. The proximity effect is found to be controllable by tuning the thickness of the Al layer. We show that improving the film quality is also helpful as it enhances the microwave critical current density, but it cannot eliminate the local heating.
Superconducting qubits have emerged as a potentially foundational platform technology for addressing complex computational problems deemed intractable with classical computing. Despite recent advances enabling multiqubit designs that exhibit coherenc e lifetimes on the order of hundreds of $mu$s, material quality and interfacial structures continue to curb device performance. When niobium is deployed as the superconducting material, two-level system defects in the thin film and adjacent dielectric regions introduce stochastic noise and dissipate electromagnetic energy at the cryogenic operating temperatures. In this study, we utilize time-of-flight secondary ion mass spectrometry (TOF-SIMS) to understand the role specific fabrication procedures play in introducing such dissipation mechanisms in these complex systems. We interrogated Nb thin films and transmon qubit structures fabricated by Rigetti Computing and at the National Institute of Standards and Technology through slight variations in the processing and vacuum conditions. We find that when Nb film is sputtered onto the Si substrate, oxide and silicide regions are generated at various interfaces. We also observe that impurity species such as niobium hydrides and carbides are incorporated within the niobium layer during the subsequent lithographic patterning steps. The formation of these resistive compounds likely impact the superconducting properties of the Nb thin film. Additionally, we observe the presence of halogen species distributed throughout the patterned thin films. We conclude by hypothesizing the source of such impurities in these structures in an effort to intelligently fabricate superconducting qubits and extend coherence times moving forward.
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identifi cation of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of loss, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Lastly, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا